题目连接
模拟+贪心的解法
(题意也写在上边了呀QAQ)
很容易看到,模拟加上贪心的解法在代码量上有很大的弊端(是真心不好写啊),然后这里就要去想怎么去优化这个问题,我的办法就是我们还是要去贪心,但是怎么贪心呢,是不是我们可以先去选择所有下一个节点的后继节点数最少的就可以完成这样一个目的?
那么,我们到达某个节点之后,就是去遍历其所有的后继节点,看哪个节点的目前所剩后继节点最少,我们先去走它。(有丢丢丢丢类似拓扑吧,但是还真不是…… )
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define efs 1e-6
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define max3(a, b, c) max(a, max(b, c))
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int dir[6][2] =
{
0, 2,
2, 0,
1, 1,
1, 2,
2, 1,
2, 2
};
const int fir[4][2] =
{
1, 1,
-1, 1,
1, -1,
-1, -1
};
int N, M;
inline bool In_map(int x, int y) { return x > 0 && y > 0 && x <= N && y <= M; }
bool vis[105][105];
inline int _get(int x, int y)
{
int sum = 0;
for(int i=0, xx, yy; i<6; i++)
{
for(int j=0; j<4; j++)
{
xx = x + dir[i][0] * fir[j][0]; yy = y + dir[i][1] * fir[j][1];
if(!In_map(xx, yy) || vis[xx][yy]) continue;
sum++;
}
}
return sum;
}
void dfs(int x, int y)
{
printf("%d %d\n", x, y);
vis[x][y] = true;
int Minn = INF, idx = 0, idy = 0;
for(int i=0, xx, yy, dis; i<6; i++)
{
for(int j=0; j<4; j++)
{
xx = x + dir[i][0] * fir[j][0]; yy = y + dir[i][1] * fir[j][1];
if(!In_map(xx, yy) || vis[xx][yy]) continue;
dis = _get(xx, yy);
if(dis < Minn)
{
Minn = dis;
idx = xx; idy = yy;
}
}
}
if(Minn < INF) dfs(idx, idy);
}
inline void init()
{
for(int i=1; i<=N; i++) for(int j=1; j<=M; j++) vis[i][j] = false;
}
int main()
{
int Cas; scanf("%d", &Cas);
while(Cas--)
{
scanf("%d%d", &N, &M);
init();
if(N == 1 && M == 1)
{
printf("YES\n");
printf("1 1\n");
continue;
}
if(N == 1 || M == 1)
{
printf("NO\n");
continue;
}
if(N == 2 && M == 2)
{
printf("NO\n");
continue;
}
init();
printf("YES\n");
dfs(1, 1);
}
return 0;
}