读论文(一)Global Vectors for Word Representaion

本文介绍了GloVe模型,它结合了全局矩阵分解和局部上下文窗口方法,旨在优化词向量表示。通过对词类比任务、词相似度任务和NER的实验,展示了GloVe在多种任务上的优越性能,并分析了模型参数如向量长度、上下文窗口大小和语料库规模对结果的影响。
摘要由CSDN通过智能技术生成

Introduction

        大多数词向量方法依赖于成对的词向量之间的距离或角度,作为评估此类此表示的内在质量的主要方法。有人提出了一种新的、基于单词类比的评估方案,该方案通过检查单词向量之间的标量距离,而不是不同的维度差异,来探索单词向量空间的精细结构。举例:"the analogy king is to queen as man is to woman" should be encoded in the vector space by the vector equation king -queen =  man - woman. 这种评估方案倾向于产生意义维度的模型,从而抓住分布式表示的多聚类思想(后半句不太懂)

Related Work

       学习词向量的两个主要模型族是:(1)全局矩阵分解方法,如潜在语义分析(LSA) 和(2)局部上下文窗口方法,如skip-gram模型。目前,这两种模型有缺陷。虽然像LSA这样的方法可以有效地利用统计信息,但它们在单词类比任务上做得相对较差,这表明向量空间结构不是最优的。像skip-grams这样的方法可能在类比任务上做得更好,但它们没有很好地利用语料库的统计数据,因为它们训练的是单独的局部上下文窗口,而不是全局共出现计数。

        矩阵分解法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值