防止过拟合的几种方法

过拟合是指模型在训练集上表现良好但测试集上效果差。防止过拟合的方法包括:1) 正则化,如L1和L2正则,限制模型复杂度;2) BN(批标准化)加速训练并防止过拟合;3) 提前终止训练在验证集性能开始下降前停止;4) 增加样本数量增强模型泛化能力;5) Dropout算法,随机失活神经元以提高泛化能力。
摘要由CSDN通过智能技术生成

什么事过拟合?

过拟合(overfitting)是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合。
具体表现就是最终模型在训练集上效果好;在测试集上效果差。模型泛化能力弱。

1:正则化

1.1 L1 正则

在这里插入图片描述

1.2 L2 正则

在这里插入图片描述
L1正则与L2正则的思想就是不能够一味的去减小损失函数,你还得考虑到模型的复杂性,通过限制参数的大小,来限制其产生较为简单的模型,这样就可以降低产生过拟合的风险。

在优化损失函数的时候L1正则化会产生稀疏矩阵,导致一部分w为0,注意这也是L1正则化的核心思想。产生稀疏矩阵之后,一部分w为0,一部分不为0,这样即可对特征进行选择。选择比较重要、明显的特征作为分类和预测的依据,抛弃那些不重要的特征。

L2正则化则是趋向于把所有参数w都变得比较小,一般认为参数w比较小的时候,模型比较简单。直观上来说,L2正则化的解都比较小,抗扰动能力强。在求解过程中,L2通常倾向让权值尽可能小,最后构造一个所有参数都

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值