机器学习
qq_41732387
这个作者很懒,什么都没留下…
展开
-
KNN算法,K聚类的优缺点
优点① 简单,易于理解,易于实现,无需参数估计,无需训练;② 对异常值不敏感(个别噪音数据对结果的影响不是很大);③ 适合对稀有事件进行分类;④ 适合于多分类问题(multi-modal,对象具有多个类别标签),KNN要比SVM表现要好;缺点① 对测试样本分类时的计算量大,内存开销大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是...原创 2019-01-18 16:15:35 · 3219 阅读 · 0 评论 -
记录逻辑回归和线性回归 大神的blog
逻辑回归:https://blog.csdn.net/chibangyuxun/article/details/53148005线性回归:https://blog.csdn.net/skullFang/article/details/79103061转载 2019-01-18 17:02:56 · 127 阅读 · 0 评论 -
机器学习 KNN算法实现
本文提供了机器学习knn算法实现数据下载地址链接:https://pan.baidu.com/s/13EYucdTlo8AjUc0RiFAawA提取码:jpswfrom os import listdirimport numpy as npimport operator# 数据准备,将图像转换为测试向量def img2vector(filename): # 创建向量 ...原创 2019-01-08 13:14:12 · 219 阅读 · 0 评论 -
k聚类算法(均值聚类)的实现(无监督学习)
本文给出了k聚类算法的简单实现数据下载地址链接:https://pan.baidu.com/s/1iLLWZ73ErShuDOByWEMFEQ提取码:5chgimport numpy as npimport matplotlib.pyplot as plt#将文件数据存入数组def LoadDataSet(filename): fr = open(filename) ...原创 2019-01-08 13:18:52 · 459 阅读 · 0 评论 -
防止过拟合的几种方法
什么事过拟合?过拟合(overfitting)是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合。具体表现就是最终模型在训练集上效果好;在测试集上效果差。模型泛化能力弱。1:正则化1.1 L1 正则1.2 L2 正则L1正则与L2正则的思想就是不能够一味的去减小损失函数,你还得考虑到模型的复杂性,通过限制参...原创 2019-01-20 13:39:47 · 1459 阅读 · 0 评论 -
支持向量机的笔记
目的:找到一个超平面 使得超平面两侧支持向量的距离最大支持向量:超平面两侧距离超平面最近的点很好的一个课件:https://wenku.baidu.com/view/fa8e7f2eccbff121dd368336.html...转载 2019-02-19 21:00:51 · 265 阅读 · 0 评论