Bellman-Ford算法求最短路径

struct Node
{
	int v;
	int dis;
};

vector<Node> adj[maxv];  //图的邻接表 
int n;   //n为顶点数 
int d[maxv];   //从起点到各点的最短路径长度 

bool Bellman(int s)
{
	fill(d,d+maxv,inf);
	d[s]=0;
	
	//求数组d 
	for(int i=0;i<n-1;i++)  //最多n-1轮,每轮确定一层 
	{
		for(int u=0;u<n;u++) //每轮都遍历所有边 
		{
			for(int j=0;j<adj[u].size();j++)
			{
				int v=adj[u][j].v;
				int dis=adj[u][j].dis;
				if(d[u]+dis<d[v])
				{
					d[v]=d[u]+dis;
				} 
			}
		}
	}
	
	//判断负环
	for(int u=0;u<n;u++)
	{
		for(int j=0;j<adj[u].size();j++)
		{
			int v=adj[u][j].v;
			int dis=adj[u][j].dis;
			if(d[u]+dis<d[v])
			{
				return false;
			}
		}
	}
	return true;	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值