笔记
文章平均质量分 58
北溟客
这个作者很懒,什么都没留下…
展开
-
【踩坑】经验之谈 有关sudo apt-get update 时 ModuleNotFoundError
这里记录几个需要注意的问题,以后备查:更新python版本在更新python版本以后,会出现终端失效、software updater失效等问题。尤其是会出现:Traceback (most recent call last): File "/usr/lib/cnf-update-db", line 8, in <module> from CommandNotFound.db.creator import DbCreator File "/usr/local/python原创 2021-08-16 23:51:43 · 1536 阅读 · 0 评论 -
【踩坑】UEFI启动模式下安装Window10和Ubuntu 16.04双系统要点
UEFI启动模式下安装Window10和Ubuntu 16.04双系统踩坑要点共存安装独立引导分区安装总结UEFI启动模式下安装Window10和Ubuntu 16.04双系统与传统BIOS启动模式下存在很大的不同,不同系统需要专门设置boot引导空间。网上大多数安装方法存在一定的问题,导致安装完系统后只能进入直接进入Window,而且由于使用UEFI引导模式,导致使用easyBCD失效。其实,双系统安装存在两种模式,一种是共存安装,一种是独立分区安装,U盘启动进入Ubuntu系统后可以看到共存安装原创 2021-06-09 21:25:59 · 1172 阅读 · 2 评论 -
paddlepaddle 报错:DeprecationWarning: Using or importing the ABCs from ‘collections‘ instead of from ‘
在使用paddlepaddle时,需要导入paddleimport paddle然后立马报错:beimingke@beimingke:~/padtest$ python3 tensor.py/home/beimingke/anaconda3/lib/python3.7/site-packages/socks.py:58: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'colle原创 2021-02-17 10:51:33 · 1596 阅读 · 0 评论 -
YOLOv3反向传播原理 之 全流程源码分析
YOLOv3反向传播原理 之 源码分析1.YOLOv3网络训练中反向传播主体流程1.1 初始化1.2 batch内梯度累加1.3 network和layer 中的关键变量2.YOLO层反向传播源码分析3.卷积层(CNN)反向传播源码分析3.1反向传播主函数backward_convolutional_layer源码分析3.2重排和矩阵相乘函数源码分析4.标准化层(batch_normalize层)反向传播源码分析5.残差层(shortcut层)反向传播源码分析6.路由层(route层)反向传播源码分析7.激原创 2020-07-12 19:11:30 · 2338 阅读 · 1 评论 -
YOLOv3反向传播原理 之 公式推导
YOLOv3反向传播原理 之 公式推导YOLOv3反向传播和所有的神经网络反向传播道理都一样,都是通过求LOSS对神经元仿射变换权重的导数,计算出一个权重变化的方向和步长,最终计算出更新的权重。传播的是LOSS,计算的是权重变化的梯度,最终求得的是更新的权重。YOLOv3为卷积神经网络,但是卷积和全连接原理相同,都是仿射变换,区别是卷积层再实际计算过程中需要通过feature map矩阵的重排和矩阵计算完成梯度计算。所以卷积神经网络的反向传播求导计算原理可以完全参考全连接,作为不能回避的内容,本文首先对原创 2020-07-05 00:24:10 · 1390 阅读 · 0 评论 -
深度学习模型评估指标:mAP计方法与voc_eval.py源码解读
voc_eval.py源码解读1.mAP基本计算原理2.源码分析voc_eval函数parse_rec函数voc_ap函数3.precision-recall图分析我们在上一篇文章《YOLOv3计算自己数据集训练模型的mAP》中介绍了使用valid计算出来验证集的检测结果结果,存于results文件,然后voc_eval函数计算mAP的操作方法。但是voc_eval函数的计算原理是什么?作者是如何通过代码实现的呢?本文尝试进行一个分析介绍。1.mAP基本计算原理mAP是mean Average Pre原创 2020-06-23 23:32:07 · 2481 阅读 · 3 评论 -
深度学习模型评估指标(区分二元分类和多分类 含YOLO源码分析):accuracy、precision、recall
深度学习模型评估指标:accuracy、precision、recall1. 准确率(accuracy)、精确率(precision)、召回率(recall)1.1基本概念1.2二元分类模型的定义1.3多分类模型的定义1.4举例说明1.5 YOLOv3中recall的计算2. 关于精确率和召回率的关系1. 准确率(accuracy)、精确率(precision)、召回率(recall)1.1基本概念准确率(accuracy)、精确率(precision)、召回率(recall)三个指标的定义是有一定条原创 2020-06-25 23:50:54 · 3217 阅读 · 0 评论