cuDNN学习笔记(3)-- 卷积公式

本文详细介绍了cuDNN的卷积公式,包括标准卷积、带填充卷积、欠采样卷积、膨胀卷积、卷积模式以及分组卷积模式,解析了各个模式下的计算原理和参数含义,强调了数据重排和并行计算在利用GPU优势中的作用。
摘要由CSDN通过智能技术生成

cuDNN提供了各种各样的API函数,本人在上一篇文章《cuDNN学习笔记(2)-- 常用数据类型和API函数》(https://blog.csdn.net/qq_41736617/article/details/119515655,持续更新中…)进行了介绍。
函数的使用离不开对于原理的理解,本篇对cuDNN的卷积公式进行介绍。
cuDNN提供了好几种计算公式,这里先对计算公式涉及到的变量进行介绍。

卷积公式的参数

Term Description 说明
x x x Input (image) Tensor 输入的图像或feature map张量
w w w Weight Tensor 权重张量
y y y Output Tensor 输出张量
n n n Current Batch Size 当前Batch的尺寸
c c c Current Input Channel 输入图像或feature map的通道数,即filter数量
C C C Total Input Channels 总的输入通道数,应该是用于并行计算使用吧
H H H Input Image Height 输入图像或feature map的高度
W W W Input Image Width 输入图像或feature map的宽度
k k k Current Output Channel 输出图像或feature map的通道数,即filter数量
K K K Total Output Channels 输出图像或feature map的总通道数
p p p Current Output Height Position 当前输出图像或feature map高度位置的索引
q q q Current Output Width Position 当前输出图像或feature map宽度位置的索引
G G G Group Count 分组数量
p a d pad pad Padding Value 填充的值
u u u Vertical Subsample Stride (along Height) 垂直方向欠采步长
v v v Horizontal Subsample Stride (along Width) 水平方向欠采步长
d i l h dil_h dilh Vertical Dilation (along Height) 垂直方向膨胀/扩充
d i l w dil_w dilw Horizontal Dilation (along Width) 水平方向膨胀/扩充
r r r Current Filter Height 当前Filter索引,这个理解应该是多维张量时通道数在一个方向(Height)的数量
R R R Total Filter Height 总的Filter高度
s s s Current Filter Width 当前Filter索引,这个理解应该是多维张量时通道数在另一个方向(Height)的数量
S S S Total Filter Height 总的Filter宽度
C g C_g Cg C / G C/G C/G 分组后一个组内的总输入通道数
K g K_g Kg K / G K/G K/G 分组后一个组内的总输出通道数

卷积公式

标准的卷积公式

标准的卷积公式如下:
y n , k , p , q = ∑ c C ∑ r R ∑ s S x n , c , p + r , q + s × w k , c , r , s y_{n,k,p,q}=\sum_{c}^C{\sum_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北溟客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值