AI / Web3 科学家必备:实时抓取马斯克 X 上用户数据,WEB3 投研必备、AI 科研必备
心心念念,AI 科学家必备
一直想要一款这样的工具,有一个这样的知识星球,收费的:
心心念念,Web3 科学家必备
但我更想的还是 WEB3 投研,WEB3 信息差比执行力重要,信息的及时性和有用性就是黄金。
- NFT 地板价实时监控
- dc群消息实时监控
- X 消息实时监控
- token 价格实时监控
- 巨鲸钱包动向实时监控
需要抓取很多(5000人)的发文(最新项目)。
抓取工具
https://github.com/xiaoxiunique/x-kit
信息分析的算法设计
然后你在设计一个算法:
- 如果某个项目, 有1个人提到了, 不关注;
- 有10个人提到了, 浅看一下;
- 有50个人提到了, 重点研究;
- 有500个人提到了, 快跑吧.
权重设计:
- 真正的机会往往是不知名用户最先喊的, 这些人的特点是长期关注某个细分领域, 所以对该领域的变化最敏感
- 粉丝众多的大 V 权重低一些
大模型总结,重点分析有价值的内容
信息准确性的算法设计 - 贝叶斯方法
在Web3环境中,消息的准确性对于投资决策和风险管理至关重要。
贝叶斯方法提供了一种系统化且数学严谨的方式来评估和更新消息的可信度。
什么是贝叶斯方法?
贝叶斯方法基于贝叶斯定理,通过结合先验知识(先验概率)和新证据(似然),来更新事件的概率(后验概率)。
在消息准确性的评估中,贝叶斯方法可以帮助您根据新的信息动态调整对某条消息可信度的判断。
贝叶斯定理公式:
[ P ( A ∣ B ) = P ( B ∣ A ) × P ( A ) P ( B ) ] [ P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} ] [P(A∣B)=P(B)P(B∣A)×P(A)]
其中:
- ( P(A|B) ) 是在事件 B 发生的条件下事件 A 的后验概率。
- ( P(B|A) ) 是在事件 A 发生的条件下事件 B 的似然。
- ( P(A) ) 是事件 A 的先验概率。
- ( P(B) ) 是事件 B 的边际概率。
在消息准确性评估中的应用步骤
1. 定义事件和概率
- 事件 A:消息准确(例如,某个项目即将涨价)。
- 事件 B:收到该消息(例如,某推特账户发布了相关信息)。
2. 确定先验概率 P(A)
这是您在没有任何新消息时,认为消息准确的概率。可以基于历史数据或行业经验来估计。
例如,如果过去类似消息有30%的准确率,那么 P(A) = 0.3 。
3. 计算似然 P(B|A)
这是在消息准确的情况下,您收到该消息的概率。
假设准确消息发布的频率较高,比如80%,那么 P(B|A) = 0.8 。
4. 计算边际概率 P(B)
这是不论消息是否准确,您收到该消息的总体概率。可以通过全概率公式计算:
[ P ( B ) = P ( B ∣ A ) × P ( A ) + P ( B ∣ ¬ A ) × P ( ¬ A ) ] [ P(B) = P(B|A) \times P(A) + P(B|\neg A) \times P(\neg A) ] [P(B)=P(B∣A)×P(A)+P(B∣¬A)×P(¬A)]
假设消息不准确时收到该消息的概率为 P(B|\neg A) = 0.1 ,那么:
[ P ( B ) = 0.8 × 0.3 + 0.1 × 0.7 = 0.24 + 0.07 = 0.31 ] [ P(B) = 0.8 \times 0.3 + 0.1 \times 0.7 = 0.24 + 0.07 = 0.31 ] [P(B)=0.8×0.3+0.1×0.7=0.24+0.07=0.31]
5. 计算后验概率 P(A|B)
将上述数值代入贝叶斯定理:
[ P ( A ∣ B ) = 0.8 × 0.3 0.31 ≈ 0.774 ] [ P(A|B) = \frac{0.8 \times 0.3}{0.31} \approx 0.774 ] [P(A∣B)=0.310.8×0.3≈0.774]
这意味着在收到该消息后,消息准确的概率从30%提高到了约77.4%。
实际应用中的考虑因素
多个消息源的整合
在Web3中,您可能从多个账户、群组等渠道接收消息。
贝叶斯方法可以扩展到多个独立消息源的情况。
假设每个消息源提供独立的信息,您可以逐步应用贝叶斯更新,每收到一个消息源的信息,就根据其可信度调整后验概率。
消息源的可信度权重
不同的消息源可能具有不同的可信度。
您可以为每个消息源设定不同的先验概率和似然值。
例如,某些大V账户的先验准确率较高,而新账户则较低。
动态调整
随着时间的推移和更多数据的积累,您可以动态调整先验概率和似然值,使模型更符合实际情况。
例如,如果某个消息源连续多次提供准确的信息,您可以提高其可信度。
结合大数定律
大数定律在评估消息的总体趋势和模式时非常有用。
贝叶斯方法可以与大数定律结合,利用大量数据来稳定和优化概率估计。
例如,您可以基于大量推特关注者的提及次数来初步设定先验概率,然后通过贝叶斯更新进一步细化。
监控了5000个推特账户,某个项目被提及的次数为50次。
您可以将这些提及视为独立事件,利用大数定律评估整体趋势。
- 先验设定:基于历史数据,类似项目的平均被提及准确率为30%。
- 观察到的提及:50次提及中,有40次来自高可信度账户(先验准确率80%),10次来自低可信度账户(先验准确率20%)。
- 分开计算:
- 高可信度来源的后验概率:
[ P ( A ∣ B h i g h ) = 0.8 × 0.3 ( 0.8 × 0.3 ) + ( 0.2 × 0.7 ) ≈ 0.4615 ] [ P(A|B_{high}) = \frac{0.8 \times 0.3}{(0.8 \times 0.3) + (0.2 \times 0.7)} \approx 0.4615 ] [P(A∣Bhigh)=(0.8×0.3)+(0.2×0.7)0.8×0.3≈0.4615] - 低可信度来源的后验概率:
[ P ( A ∣ B l o w ) = 0.2 × 0.3 ( 0.2 × 0.3 ) + ( 0.1 × 0.7 ) ≈ 0.4286 ] [ P(A|B_{low}) = \frac{0.2 \times 0.3}{(0.2 \times 0.3) + (0.1 \times 0.7)} \approx 0.4286 ] [P(A∣Blow)=(0.2×0.3)+(0.1×0.7)0.2×0.3≈0.4286]
- 高可信度来源的后验概率:
- 综合评估:根据不同来源的后验概率,加权平均得到总体消息准确性。
贝叶斯方法为评估Web3中消息的准确性提供了一种系统化且动态调整的框架。
通过结合先验知识和新收到的证据,您可以更精准地判断消息的可信度,从而在信息高度不对称的Web3环境中做出更明智的决策。
结合大数定律和多消息源的整合,贝叶斯方法可以显著提升您对市场动态的敏感度和判断力。