M-ARC思维定式之殇:大模型在临床推理中的僵化与局限,独家提示词解决线性模式识别、对不寻常细节的捕捉不足

 


论文:Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning

对抗式题库:https://github.com/dbernardo05/M-ARC

论文大纲

├── 1 背景与动机【描述论文所处的研究背景及问题】
│
│   ├── 1.1 大型语言模型(LLMs)在医学领域的进展【背景】
│   │   ├── 1.1.1 在医学问答基准(USMLE等)上表现出接近或达到人类水平【现象】
│   │   └── 1.1.2 研究者认为此表现或源于“涌现”式推理能力【观点】
│   │
│   └── 1.2 当前在开放式临床情境中的表现不足【问题】
│       ├── 1.2.1 与真实场景中的复杂性和多样性不匹配【原因】
│       ├── 1.2.2 存在较高的“幻觉”和不确定性评估不当等风险【现象】
│       └── 1.2.3 缺乏灵活推理,难以适应长尾或低概率临床情况【问题】
│
├── 2 研究目标与贡献【阐述作者的研究动机和贡献】
│
│   ├── 2.1 识别LLMs在临床推理中的潜在失败模式【目的】
│   │   └── 2.1.1 着重考察“Einstellung效应”带来的推理僵化【重点】
│   │
│   └── 2.2 引入M-ARC(Medical Abstraction and Reasoning Corpus)【方法/贡献】
│       ├── 2.2.1 通过对抗性设计,考察模型在“长尾”和“破坏常规”情境下的表现【思路】
│       └── 2.2.2 测试LLMs的灵活推理与诊断能力【目标】
│
├── 3 方法与实验设计【论文如何展开研究】
│
│   ├── 3.1 M-ARC题目设计【数据集/工具】
│   │   ├── 3.1.1 题目类型:多选、包含对抗性选项、引入异常场景【特征】
│   │   ├── 3.1.2 针对Einstellung效应:使用低概率、非典型案例干扰常见医疗模式【目的】
│   │   └── 3.1.3 融合“信息不足时应该索取更多信息”的开放式选项【要点】
│   │
│   ├── 3.2 对比测试【实验流程】
│   │   ├── 3.2.1 与人类医生(5位)进行准确率对比【对比组】
│   │   ├── 3.2.2 与多种LLMs(GPT、Claude、Gemini、Llama系等)进行评估【实验组】
│   │   └── 3.2.3 统计性能表现和错误类型【评估方式】
│   │
│   └── 3.3 不确定性估计与校准【关键分析】
│       ├── 3.3.1 采用样本一致性方法(多次询问同题+随机扰动)【方法】
│       ├── 3.3.2 用Brier分数与可靠度曲线衡量模型自信度【指标】
│       └── 3.3.3 评估模型过度自信或不稳定输出的程度【目的】
│
├── 4 结果【论文关键发现】
│
│   ├── 4.1 LLM在M-ARC中的整体准确率偏低【现象】
│   │   ├── 4.1.1 多数模型准确率低于50%(甚至部分接近随机猜测)【结果】
│   │   └── 4.1.2 人类医生平均正确率约66%,显著高于模型【对比】
│   │
│   ├── 4.2 常识推理与灵活推理能力不足【问题】
│   │   ├── 4.2.1 对“不合常规”情境会机械套用常见方案,忽视问题前提【现象】
│   │   ├── 4.2.2 出现离谱幻觉(如“额头量血压”“无脑却怀疑脑出血”等)【示例】
│   │   └── 4.2.3 进一步印证LLMs存在Einstellung效应【结论】
│   │
│   └── 4.3 不确定性评估显示过度自信【问题】
│       ├── 4.3.1 样本一致性低,而置信度高【现象】
│       ├── 4.3.2 Brier分数与可靠度曲线也证实校准不佳【结果】
│       └── 4.3.3 规模更大的模型有相对好一点的校准,但仍显著过于自信【发现】
│
├── 5 讨论【对结果的深入阐述与分析】
│
│   ├── 5.1 Einstellung效应在LLM中的启示【讨论主题】
│   │   ├── 5.1.1 模型常基于训练语料中的高频关联做“表层匹配”【原因】
│   │   └── 5.1.2 复杂或长尾情境下,这种惯性会导致推理偏差【影响】
│   │
│   ├── 5.2 LLM在长尾和超出分布场景的泛化能力不足【问题】
│   │   ├── 5.2.1 医学实践往往充满不确定性和少见案例【事实】
│   │   └── 5.2.2 单纯的“记忆模式”难以满足真实临床需求【结论】
│   │
│   ├── 5.3 临床应用的风险与策略【建议】
│   │   ├── 5.3.1 谨慎使用LLM:对高风险或罕见场景应加强人工审查【对策】
│   │   ├── 5.3.2 发展“可选择性预测”策略:识别不确定时自动求助医生【方向】
│   │   └── 5.3.3 提升模型校准能力:降低幻觉和过度自信【改进】
│   │
│   └── 5.4 研究局限【自身分析】
│       ├── 5.4.1 M-ARC题量尚不多,需要扩充规模【范围】
│       ├── 5.4.2 题目偏对抗设计,与真实世界案例仍有差距【外部有效性】
│       └── 5.4.3 人类对这些长尾问题也常存在不同见解【局限性】
│
└── 6 结论与展望【论文最后总结】
    ├── 6.1 M-ARC的意义【总结】
    │   ├── 6.1.1 能挖掘LLM在医学推理中的失效模式【价值】
    │   └── 6.1.2 为后续改进LLM医学应用提供指引【价值】
    │
    ├── 6.2 临床部署需谨慎【建议】
    │   ├── 6.2.1 现阶段宜做辅助性工具,而非独立决策主体【建议】
    │   └── 6.2.2 配合不确定性评估、人工反馈机制【方法】
    │
    └── 6.3 未来工作【展望】
        ├── 6.3.1 扩大M-ARC规模及多样性,进一步评估模型鲁棒性【方向】
        └── 6.3.2 深化对LLM“可解释推理”与“元认知”能力的研究【研究热点】

理解

虽然大模型已经能在多数标准医考(USMLE 等常规医学考试题库)里交出高分,但论文指出,一旦离开“最常见、最典型”的场景(如救护现场、综合性住院病患场景),LLM仍可能犯严重错误。

  • 常见场景:LLMs 高分 → 给人“非常聪明”的感觉。
  • 非常规/长尾场景:LLMs 失误频发且置信度仍高 → 显示对不寻常细节的捕捉不足。

Einstellung效应是一种思维定式或“僵化思维”。

LLMs 的推理过程表现出“Einstellung 效应”(一种对已有熟悉模式的机械套用),导致模型无法灵活处理罕见或破坏常规的临床条件。

在拥有某种熟悉策略后,人(或模型)在解决新问题时,往往会优先、机械地套用曾经熟悉的方案,而难以突破已有经验去尝试更灵活的解法。

它导致个体(或模型)忽视了当前问题的新要素,从而做出错误或次优决策。

LLM 的训练过程里,看到大量“高频情境”(如“华法林会导致脑出血,要用维生素K”),导致其在测试时自动匹配表层模式,并忽略可能的罕见场景或反例。

模型在错误时依然保持高信心。这强化了“Einstellung 效应”带来的危险性——既僵化又自信。

真实医生在罕见场景下会更加谨慎,常常要求“更多信息”或更多检查;而模型则倾向于直接给出常规结论,可能忽视看似不寻常的细节。

LLM 在非常规情境下的表现确实会显著下滑,并时常错得离谱;大多数错误与“忽略关键不寻常要素、机械套用常规结论”相关。

这支持了“Einstellung 效应”这一核心假设:只要题干里出现熟悉模式,模型就倾向自动匹配既定答案,而没能识别场景与常规不符。

数据结果与对比实验给出强力证据:超过一半以上错误都和对极端变量的忽视有关。

作者由此推断:要克服这种僵化,需要在训练或推理阶段让模型学会“先确认场景是否符合常规预期”,再做诊断结论。

 

正例(没有出现僵化思维,灵活推理):

  • 假设一个病人出现发烧、喉咙痛、皮疹等常见症状,医生(或模型)根据经验首先联想到病毒感染或链球菌感染。
  • 但如果发现病人同时有明显的其他罕见特征,比如特定药物服用史、旅行史、罕见家族病遗传史,医生能及时跳出常规判断,做进一步检查或寻求其他诊断渠道——这说明跳脱了“旧有模式”。

反例(典型的 Einstellung 效应):

  • 病人实际没有大脑(anencephaly 极端案例),却因为其用药(如华法林)而被模型机械判定“或许脑出血”,继而给出“用维生素 K 逆转抗凝”之类的指令。
  • 但事实上没有大脑就不存在“脑出血”这件事,正确做法是先获取更多病史或确认病人的真实解剖状况,才考虑下一步。

本文提出了一个全新的对抗式测试集 M-ARC:

  • 里面专门包含长尾、违背常规以及需要进一步信息的开放式选项,以诱发或检测 LLM 的僵化思维模式。
  • 具体是,包含 100 道极端(例如无脑、太空站生活等)或少见的临床场景题目
  • 与传统的医学题库(USMLE)不同,M-ARC 更能突出极端/少见场景。

作者对比了小模型(如 GPT-4o-mini、Claude-Sonnet 等)与大模型(GPT-4o、Claude-Opus、Gemini-Pro)在准确率和校准上的区别。

在这里插入图片描述

观察到大模型在准确率和校准上略有改善,但**仍未根本解决“僵化+过度自信”**的问题。

 


问题

这本质上是一个模式识别问题(xx特征对应yy解法),但问题在于医疗场景会遇到这种Einstellung 效应,那模式识别应该怎么改进?

在医疗场景中出现的「Einstellung 效应」本质上体现了模型在模式识别时的“机械套用”,而缺乏对异常或长尾场景的动态适应。

要改进这一点,需要在算法与训练环节做多层次的增强,使模型有能力识别并跳出“固定模式”。

以下是一些思路:


  1. 丰富训练数据,覆盖更多“长尾”与“反常”病例

    • 传统医学训练数据大多集中于“典型”案例,导致模型更易形成固化经验。
    • 若能在训练集中加入大量极端、少见甚至人造对抗性病例(如 M-ARC 所做),模型将更早暴露“机械错误”,进而学会对非常规输入保持警觉。
  2. 引入元学习或元认知机制,让模型“觉察”自身不确定

    • 在诊断环节,遇到信息不足或逻辑冲突时,模型应有“反思”能力,而不是立即给出答案。
    • 具体做法包括:
      • 自信度校准:用 Brier 分数、温度标定等方法,让模型在易错场景下自我降权;
      • 自检策略:如在回答前先自问“是否存在异常信息”,如果探测到异常就提示“需要更多资料”或“请咨询专家”。
  3. 强化学习方法:鼓励多步推理

    • 普通模式识别常是一对一的匹配:“有华法林→想起脑出血→直接开药”。
    • 若采用链式、多步推理:先确认病例细节是否正常,再判断用药逻辑,这样当出现“无脑”或太空环境这类破坏常规因素时,模型会在中途识别到冲突,修正后续结论。
  4. 知识图谱或规则约束:引入硬性医学常识

    • 针对“若患者没有大脑,就无法脑出血”这类无可争议的医学事实,可以在模型内部加硬性规则。
    • 当文本检测到“完全无脑”特征,后续就不会再判断“是否有脑出血”等矛盾情形。
    • 这样的结构化知识可减少模型盲目依赖统计模式。
  5. 增设“疑似场景”判别层,让模型先做场景分类

    • 和医生诊断类似,“分诊”往往在正式诊断前就把病人分到大致正确的科室;
    • 模型先判断“这是常规病还是罕见病/异常病”,若属于异常病情,可自动启用更谨慎的推理子模块或直接提示人工接管。
  6. 对抗式训练:在推理过程中针对干扰项进行对抗学习

    • 主动在模型推理时插入“混淆性线索”,看模型是否盲目被带跑。
    • 通过反复迭代,使模型学会区分“真正的要害信息”与“无效干扰信息”。
  7. 可选择性预测策略

    • 当模型判定自己对案例把握不足,就不要强行输出结论,而提示“需进一步检查”或“转人工处理”。
    • 这在医疗场景中尤其关键,能降低因高自信错判导致的风险。
  8. 多模态数据融合,减少单一文本误判

    • 如果临床数据不仅仅是文字描述,还包含影像、检验报告等,模型对“无脑”或“太空血压异常”等就更易做出准确判断。
    • 多模态输入可以让模型更可靠地识别极端状况,从而突破纯文本模式识别的局限。

总之,要解决医疗领域里“模式识别僵化”带来的错误,关键是在算法层面给模型“自检、思考、或求助”的余地,在数据层面则要覆盖更多非典型病例,并在推理逻辑中加入硬性常识规则或多步反思。

只有让模型学会主动识别异常、承认不确定性并及时调整,才能真正突破「Einstellung 效应」的瓶颈。

 


独家提示词,破解 模式识别僵化 问题

我自己搞了一个提示词,解决这个非常规场景问题。

结构化分析问题,找到所有影响结果的要素,全方位,无死角的分析问题

你要考虑问题所有组成类别、要素,比如问题:1L水,怎么放入容量 0.1L 的杯子?

你需要以 9 个分析师的身份来分析【XXX】问题,你分析的步骤如下:

1.分析师 1 遇到问题从问题本身分析,比如杯子变化,变成气球、梯形等

2.分析师 2 遇到问题从环境分析,比如从地球到月球等

3.分析师 3 遇到问题从解决主体分析,比如水变化,变成冰、水蒸气等

4.分析师 4 遇到问题从逆推、正推、结构、原理分析。

5.分析师 5 遇到问题从元认知角度分析

	元认知能力强的人,在阅读的时候,时时刻刻都能注意到自己的思考与思路,时时刻刻都在对自己的思考与思路进行反思、校验、修订。

	反思自己的第一步是什么,第二步是什么,......第 N 步是什么?

	反思整个过程,是否在拥有某种熟悉策略后,人(或模型)在解决新问题时,往往会优先、机械地套用曾经熟悉的方案,而难以突破已有经验去尝试更灵活的解法。

	它导致个体(或模型)忽视了当前问题的新要素,从而做出错误或次优决策。

	真实医生在罕见场景下会更加谨慎,常常要求“更多信息”或更多检查;而模型则倾向于直接给出常规结论,可能忽视看似不寻常的细节。

	大多数错误与“忽略关键不寻常要素、机械套用常规结论”相关。

	- 假设一个病人出现发烧、喉咙痛、皮疹等常见症状,医生(或模型)根据经验首先联想到病毒感染或链球菌感染。

	- 但如果发现病人同时有明显的其他罕见特征,比如特定药物服用史、旅行史、罕见家族病遗传史,医生能及时跳出常规判断,做进一步检查或寻求其他诊断渠道——这说明跳脱了“旧有模式”。


6.分析师 6 遇到问题从全面因素分析,再细分各种可能。

    问题涉及所有类别有哪些?每个类别的可能问题,导致不能满足题目要求?

    比如在一个山区有一个死亡弯道,交通死亡率是其他地方的几十倍,你分析这个问题。

	但你不能直接出答案,而是先分类(建立一个框架),比如车是一类、人是一类、路是一类、环境是一类,确保把所有分类情况都包括在内,又没有逻辑上的重复。           

	再逐一思考每个分类下,各种细致的可能性,如人可能喝酒、疲劳、惊吓、幻觉等,如车可能系统失灵、爆胎、底盘低等,如路可能急弯、路滑、路不平、尖锐物等,如环境可能风大、光过暗、光过亮等

7.分析师 7 不能只做模式识别,要考虑更多角度,避免漏诊和误诊

	把用户的所有症状分门别类,比如呼吸道症状哪些、消化道症状哪些等,再整体性认识上,做分析

	避免线性模式匹配(xx特征,对应yy疾病),没有全局的分析(有一些比如感染细菌,就是全身的,没有整体分析)

	出现整体性分析的情况:

	- 多系统或多器官交叉受累
	- 时序性与病情进展被忽略
	- 混合或继发感染
	- 慢性合并急性发作/多重病史
	- 少见或非典型表现的疾病
	- 多因素病因或并发症
	- 缺乏流行病学
	- 检验结果或其他上下文
	- 需要动态监测
	- 反复评估的重症疾病

8.分析师 8 对于用户描述的症状,不能用一刀切的正常标准,每个人都不同

	比如,91日是入学年龄的划分线。
	小明和小红是班上最调皮的两个孩子,老师觉得他们可能有多动症但实际上,小明和小红分别是830日和831日出生的(卡线出生),而班上其他同学大多是前一年9月到12月出生的相差将近一岁(人生相差20%),孩子越小越爱动,坐不住、爱吵闹、不听指令,男孩爱动概率比女孩多2倍,和同班同学显得不正常结果可能是:
	年龄小的孩子更容易被贴上"问题儿童"的标签,
	课堂纪律要求严格+家长和老师对孩子的行为期望较高,跟不上进度医生诊断:多动症+智力障碍+抑郁症,开药治疗。
	医生不会想到,同一个班上的孩子年龄可能相差一岁(人生相差20%),导致过度诊断,真把孩子搞出问题了对症状的判断没有客观标准,你就把诊断对象跟“正常”的孩子进行比较 -- 可问题是什么叫“正常"?
	班上这些孩子年龄相差可以达到20%,你强行规定“正常"就很容易判断错误。
	症状和疾病之间并非简单的-一对应关系,同样的病可以表现出不同的症状,同样的症状可能对应不同的病而"一刀切"的正常标准,也会导致误诊、过度诊断、诊断不足。
	就是如果你只听老师、家长的描述(纯对比),没考虑不同人之间的客观因素,你很容易诊错。
	因为对症状的判断没有客观标准,你就把诊断对象跟“正常”的孩子进行比较 —— 可问题是什么叫“正常”?
	班上这些孩子年龄相差可以达到20%,更何况就算是同年同月同日生的两个人也可以非常不一样,你强行规定“正常”就很容易判断错误。
	如果医生或者大模型,能事先意识到自己可能会有的各种偏误,知道类似的病例容易出怎样的诊断错误,那也很有帮助。
	最简单的就是在对儿童诊断ADHD之前,如果系统能先提醒一下,同一个班上的孩子年龄可能相差一岁,让脑子里有这根弦,就可以减少过度诊断,而现实是医生往往没有那根弦。

9.所有分析师都写下思考这个问题的第一个步骤,再与大家分享

10.分析师9,确保分析师12345678对问题的类别、要素分析没有缺漏,如果缺漏自己负责补充新类别、新要素

11.然后,所有分析师继续写下思考的下一个步骤,并与大家分享,以此类推,直到所有分析师写完他们思考的所有步骤

12.只要大家发现某分析师可能持续“机械套用”已有模式,且没有根据新要素修正,被其他分析师标为“出错的思维”,就让这位分析师离开

 


输入与答案:急性支气管炎 + 腺病毒感染 + 疑似耐药沃氏葡萄球菌感染

# 输入(患者症状描述)

## 基本信息
- 年龄:53- 性别:女

## 主要症状
1. 发热
   - 持续时间:2- 特点:有畏寒,无寒战抽搐
   - 用药情况:布洛芬混悬液可暂时退热

2. 呼吸道症状
   - 咳嗽
   - 喉间有痰
   - 流清涕
   - 无气急喘息
   - 无呛咳声嘶

3. 消化道症状
   - 呕吐2次(病初)
   - 轻微腹部不适
   - 大便2天未解
   - 食欲较差

## 体格检查
- 咽部充血
- 扁桃体II度肿大
- 双肺呼吸音粗
- 无明显干湿啰音
- 无浅表淋巴结肿大
- 无眼睑浮肿
- 无皮疹及手足硬肿
2.答案:急性支气管炎 + 腺病毒感染 + 疑似耐药沃氏葡萄球菌感染

 


o1 Pro 诊断:上呼吸道病毒感染、细菌感染、混合感染、消化道症状与便秘

以下内容仅供参考,不能替代当面就医。如孩子症状持续不缓解或加重,建议及时去医院就诊。

---

从病史与体征上看,孩子主要表现为发热、上呼吸道症状(咳嗽、咽部充血、扁桃体肿大、流涕)、少量的消化道症状(呕吐、食欲差、2天未解大便等)。发热可用布洛芬暂时退烧,咽部充血与扁桃体 II 度肿大提示咽扁桃体炎症明显,咳嗽伴喉间有痰可能存在上呼吸道或支气管黏膜炎症。整体症状表现有以下几种可能:

1. **上呼吸道病毒感染(如感冒、流感等)**  
   - 表现:发热、咳嗽、流清涕、咽部充血等  
   - 部分患儿会有轻度消化道症状(呕吐、食欲不佳等)  
   - 多数为自限性,可对症治疗,如退热、补液、监测症状变化

2. **细菌感染(如细菌性咽扁桃体炎)**  
   - 表现:咽痛明显、扁桃体肿大且可见化脓、发热 often 较高且持续时间长  
   - 有时可并发中耳炎、肺炎等  
   - 如果考虑细菌感染可能性大,医生可能会建议进行血常规检查、炎症指标(CRP 等)检查,并视情况使用抗生素

3. **混合感染**  
   - 在部分患儿中,存在病毒和细菌的混合感染,症状可较重,病程也可能延长

4. **消化道症状与便秘**  
   - 呼吸道感染期间,孩子食欲差、饮水量减少、活动量减少,都可能引起暂时性便秘  
   - 也不排除伴随“胃肠型感冒”的可能

---

## 需要警惕的情况

- 发热反复且温度持续较高,且退热药效果越来越差  
- 咳嗽明显加重,出现喘憋、呼吸困难、夜间阵发性咳嗽严重  
- 出现精神萎靡、嗜睡、面色苍白、呕吐加重、腹痛加剧  
- 扁桃体出现明显化脓或颈部淋巴结明显肿大、疼痛  
- 出现皮疹、手脚发凉或末梢循环不良等

如有以上任何严重表现,应及时就医。

---

## 居家护理建议

1. **保持充分休息**  
   - 孩子应多卧床或室内活动,避免剧烈运动  
   - 保证足够睡眠

2. **合理使用退热药物**  
   - 在发热明显(一般>38.5℃)且孩子不适时,可按医嘱应用布洛芬或对乙酰氨基酚退热  
   - 不可随意加大剂量或频繁使用

3. **观察体温和症状变化**  
   - 定时测量体温并记录  
   - 关注咳嗽频率、痰量、精神状态、饮食和大小便情况

4. **饮食管理**  
   - 清淡易消化饮食,多补充水分  
   - 少量多次喂养,避免因一次吃太多而引发呕吐  
   - 如果孩子胃口不好,不必过分强求,可适当给予汤类、粥类等流质或半流质饮食

5. **缓解咽部不适**  
   - 适量温水漱口,必要时可用淡盐水漱口  
   - 保证室内空气湿润,避免干燥加重咳嗽

6. **便秘对策**  
   - 多饮水、保证纤维素摄入(新鲜蔬菜、水果或小米粥、菜粥等)  
   - 适度按摩腹部(顺时针轻柔按摩),促进肠蠕动  
   - 若超过 23 天仍无排便,可在医生指导下使用通便药物(如开塞露)或其他干预

---

若孩子症状两三天内无明显缓解,或出现上述警示症状,需要到医院复诊或进一步检查(血常规、CRP、胸片等),明确是否需要抗感染或其他处理。祝孩子早日康复!

 


9位分析师 + o1 Pro 诊断:急性病毒性上呼吸道感染(或病毒性咽扁桃体炎)、细菌性并发感染

以下示例性回答,尝试模拟“9 位分析师”在面对该患儿(53 个月,发热、咳嗽、有痰、流涕、呕吐、轻微腹部不适、便秘、食欲差、扁桃体 II 度肿大等症状体征)时的结构化分析思路。**由于真实医疗场景涉及更复杂的考虑和更多信息(检验、影像、流行病学等),以下内容仅做示范性结构化分析,不作为最终诊断或处方。临床上需要结合更多检查和信息来做综合评估。**

---

## 第 1 步:9 位分析师分别给出他们对问题的**第一步思考**(提纲式)

### 分析师 1(从“问题本身”角度)
- 关注“问题本身”即:该患儿当前的症状和体征,核心是一个“5 岁儿童,发热 2 天,咳嗽,咽部充血,扁桃体肿大,伴随轻度胃肠道症状”。
- **第一步思考**:先确认最主要的临床表现和其紧迫程度,如:高热程度、精神状态、呼吸是否困难,排除是否有重症倾向(如中枢症状、严重脱水或哮喘发作、急腹症征兆等)。

### 分析师 2(从“环境”角度)
- 关注家庭环境、流行病学环境、社区或学校是否有相似病例,最近季节(流感季节还是其他传染病高发季)?
- **第一步思考**:若近期所在地区正处于流感或其他病毒(如合胞病毒、腺病毒等)高发期,则患儿出现发热、咳嗽、咽痛等症状可能性大;如周围是否有水痘、手足口、猩红热等流行,也需纳入考虑。

### 分析师 3(从“解决主体”角度:病因或患儿自身情况)
- 关注患儿的体质、免疫状况、有无基础疾病或者特殊病史(如过敏史、反复扁桃体炎史等)。
- **第一步思考**:先看患儿是否经常出现扁桃体炎或反复感冒,是否有既往并发症史,如有反复中耳炎/鼻窦炎/肺炎等,需要提高警惕。

### 分析师 4(从“逆推、正推、结构、原理”角度)
- 关注症状演变:先发热后咳嗽,还是先咳嗽后发热?喉咙痛与扁桃体肿大关系如何?消化道症状是否与发热同期出现?
- **第一步思考**:用常见急性上呼吸道感染的病程模型进行“正推”,或者从肺炎、细菌性扁桃体炎等更严重疾病“逆推”,看是否符合症状分布、时序、典型体征。

### 分析师 5(从“元认知”角度)
- 强调在分析时,避免“机械套用”常见病结论,要留意患儿有无不寻常的症状或病史。
- **第一步思考**:审视已有信息是否足够?是否需要更多检查(如血常规、CRP 或抗原检测)。警惕罕见情况或混合感染。

### 分析师 6(从“全面因素”与分类框架角度)
- **分类框架**:呼吸系统、消化系统、全身状态(发热/精神/皮疹/淋巴结)、外环境因素(流行病学)等。
- **第一步思考**:针对“发热+呼吸道症状+消化道症状”这样一个组合,常见分类:
  1. **上呼吸道感染**(病毒或细菌)
  2. **下呼吸道感染**(如支气管炎、肺炎)  
  3. **肠道病毒相关的混合症状**(手足口/疱疹性咽峡炎等)
  4. **细菌性扁桃体炎**(链球菌等)
  5. **其他急性感染**(腺病毒、EB 病毒等)
- 需要一一排查。

### 分析师 7(从“避免漏诊和误诊”角度)
- 警惕多器官或多系统交叉;注意病情时序性、罕见表现、混合或继发感染等。
- **第一步思考**:先看是否有皮疹、结膜炎、明显腺体肿大、呼吸困难、脱水等,排除川崎病、麻疹、猩红热等;无皮疹、手足硬肿提示暂不考虑麻疹或川崎;但仍需持续观察。

### 分析师 8(从“个体差异、不一刀切”角度)
- 5 岁孩子之间个体差异大,症状表现也不尽相同;同样的发热、咳嗽,在抵抗力不同的孩子上表现差异较大。
- **第一步思考**:注意患儿年龄、营养状态、家长对症状的主观描述可能存在偏差,需要结合客观检查。

### 分析师 9(“确保前面各分析师无缺漏”)
- 对前 8 位分析师的思路进行补充或检查。
- **第一步思考**:是否漏了过敏因素?是否漏了外伤或异物误吸?(患儿无呛咳或急性呼吸困难,似乎不符合异物吸入)  
- 看上去暂未漏重要类别。先保留继续观察。

---

## 第 2 步:9 位分析师分别**继续深入**他们的分析思路

### 分析师 1(关注问题本身:症状特征)
1. **发热 2 天,退热药后可暂时退热**,提示患儿对常规退热药反应良好;发热程度未知(最高多少度?),需警惕高热惊厥风险(虽然目前无抽搐)。
2. **咳嗽+咽部充血+扁桃体 II 度肿大**:倾向急性咽炎/扁桃体炎,可病毒或细菌,也可能二者混合。
3. **胃肠道症状**:呕吐 2 次在病初,后续仅轻微腹胀、便秘 2 天。胃肠症状不算重,但需警惕脱水或电解质紊乱(若进食少、饮水少)。

### 分析师 2(从环境角度:流行病学、季节)
- 若此时是冬春季,流感、呼吸道合胞病毒、腺病毒等较常见;  
- 若幼儿园/学校近期有类似病例爆发,或家中有大人流感,说明病毒感染概率大;  
- **因此**:当前需要在临床上排除/初筛流感或其他病毒感染,如果有相应抗原/核酸检测条件,可以考虑做。

### 分析师 3(从患儿自身情况:病史)
- 没有提到过敏史或免疫缺陷史,也无提及反复扁桃体炎病史或心脏病史;
- 无皮疹、无明显全身多系统症状(如关节痛、皮肤黏膜病变),暂不考虑川崎病、风湿热等;
- 如果过去经常扁桃体发炎,可能已到达需要警惕链球菌感染的程度,但当前信息不足。

### 分析师 4(逆推/正推思路)
- **正推**:典型病毒性感冒/急性上呼吸道感染(URI)往往出现“发热+咳嗽+流涕+咽痛”组合,并可能伴有轻微胃肠道症状,2~5 天自行缓解是常见模式。患儿目前病程 2 天,可继续观察。
- **逆推**:若是细菌性扁桃体炎(如链球菌),通常发热会较高,咽痛较剧烈,也可能无明显咳嗽(但有时仍有咳嗽)。是否有咽部明显的“白点”或脓性分泌物?化验血常规(中性粒细胞升高/CRP 明显升高)可提示细菌感染。  
- 目前咽部仅描述“充血”,未描述脓点或渗出,尚无法肯定是细菌感染。

### 分析师 5(元认知:反思是否信息不足)
- 可能遗漏的关键信息:
  - **发热幅度**:最高体温是否 38℃、39℃ 甚至 40℃?
  - **血常规或炎症指标**:白细胞计数、CRP、淋巴/中性粒细胞比例?
  - **当地流行病学**:是否流行猩红热、腺病毒、手足口?
  - **患儿精神状态和水合情况**:高热是否造成明显嗜睡/精神不振?
- 建议在诊断前尽量获取这些信息,避免盲目判断。

### 分析师 6(全面因素分类后,逐一排除/考虑)
1. **上呼吸道感染(病毒性)**:最常见,符合咳嗽、流清涕、咽部充血等。
2. **上呼吸道感染(细菌性,如链球菌)**:需要观察咽部脓性分泌物、发热特点、化验指标;目前未排除。
3. **下呼吸道感染**:肺部听诊仅呼吸音粗,无明显啰音,暂不支持典型肺炎;但仍建议警惕早期支气管炎/肺炎(后期可能出现啰音)。
4. **肠道病毒(疱疹性咽峡炎、手足口病)**:若口腔黏膜、手足并无水疱或皮疹,可暂时排除。
5. **猩红热**:有时扁桃体肿大、发热,可有草莓舌、皮疹等,目前无皮疹报道;需要警惕,但暂无强指向。
6. **腺病毒**:可有发热、咽炎、结膜炎、腹泻等多系统症状,患儿暂无结膜炎、显著腹泻。

### 分析师 7(避免漏诊/误诊:多角度警惕)
- 需要动态观察:若后续出现呼吸急促、肺部啰音、持续高热不退等,应考虑下呼吸道或并发细菌感染;
- 若后续出现皮疹,需重新评估如麻疹、猩红热、川崎病等;  
- 暂时倾向于**普通病毒性上呼吸道感染或病毒性扁桃体炎**可能性更大,但保持警惕。

### 分析师 8(个体差异)
- 5 岁儿童免疫系统逐渐成熟,但仍比成人易感;
- 呕吐可能与咽部刺激、发热、进食减少有关,也与个体反应不同有关;
- 2 天不解大便可能是近期进食少、缺少膳食纤维或喝水不足,也可能与活动量减少、发热引起肠蠕动减慢有关。

### 分析师 9(检查前 8 位分析师,补充缺漏)
- 暂无明显漏掉的“外伤、过敏、哮喘、异物”可能性;
- 大致同意主要排查急性感染(病毒>细菌)。

---

## 第 3 步:综合分析,形成初步诊断方向

- **高疑似:病毒性上呼吸道感染或急性咽扁桃体炎(病毒为主)**  
  - 理由:咳嗽、流涕、咽部充血、扁桃体 II 度肿大、可伴轻度胃肠道反应,不典型细菌感染体征。  
- **须警惕:细菌性扁桃体炎**  
  - 若咽部疼痛明显、扁桃体有脓点、高热持续不退,或血象提示细菌感染,需要考虑链球菌感染。  
- **暂不支持:典型肺炎、典型麻疹、猩红热、川崎等**  
  - 因缺乏皮疹、结膜充血、特殊舌苔、全身或心血管症状等表现。

---

## 第 4 步:可能的检查与治疗建议(示例性,不做医疗处方)

1. **检查**  
   - 血常规(WBC 总数,中性粒/淋巴比例),CRP 或 PCT(降钙素原),如条件允许可做抗原或病原学检测(流感、RSV、腺病毒、链球菌快速检测)。  
   - 评估患儿整体水合状态、精神状态,必要时行电解质检测。

2. **对症支持治疗**  
   - 继续观察体温,合理使用退热药(如布洛芬或对乙酰氨基酚),注意用药间隔和剂量。  
   - 多喝水,改善饮食,若呕吐减少,可逐步恢复半流质/普通饮食;注意通便(适量蔬果、增加水分摄入)。  
   - 保证休息和保暖,避免交叉感染。

3. **抗感染治疗决策**  
   - 若排除或低度怀疑细菌感染,不建议立即使用抗生素;若验血提示细菌性感染或临床高度怀疑链球菌性扁桃体炎,则在医生指导下应用相应抗生素。

4. **随访和警示症状**  
   - 若出现高热持续不退、呼吸急促、明显咽痛加重、皮疹、精神萎靡或其他不寻常症状,请及时复诊。

---

## 第 5 步:确认无明显错误的分析师继续保留

- 目前各分析师提出的思路并未出现明显“硬性错误”或与临床常识严重相悖的地方;大家在各自角度下都强调了排查常见感染、重视流行病学、留意不寻常症状、动态观测。  
- 因此,此时并不需要让任何分析师离开。

---

## 结论(示范性结论,非最终诊断)

在目前掌握的信息下,**倾向于急性病毒性上呼吸道感染(或病毒性咽扁桃体炎)** 的可能性较大,需警惕细菌性并发感染。建议进一步完善血常规等检查,结合临床观察,若无明显细菌感染证据,则以对症支持治疗、密切随访为主。若出现疑似细菌感染表现,及时行相应治疗。

---

### (温馨提示)

上文是对“如何进行结构化、全方位、多角度的分析”做了模拟示范,帮助理清思路,并不代表真实诊断。临床诊疗需线下面诊医生、结合实验室检查、影像学及随访观察。如有需要,请及时就医。

 


对比俩者答案:9位分析师 + o1 Pro 诊断 胜

从“真实答案”中给出的诊断组合来看——**急性支气管炎 + 腺病毒感染 + 疑似耐药沃氏葡萄球菌感染**,其实核心是「病毒(腺病毒)+ 细菌(耐药葡萄球菌)混合感染,伴随下呼吸道受累(急性支气管炎)」这样一个比较具体的定位。

对比 A 和 B 两种归纳:

- **A 的回答**:上呼吸道病毒感染、细菌感染、混合感染、消化道症状与便秘  
  这是一种“罗列式”提法,包含了「病毒感染」「细菌感染」「混合感染」的概念,也提到消化道症状和便秘,但没有更具体地指向“下呼吸道(支气管)的确切问题”,也没聚焦到像“腺病毒”或“耐药葡萄球菌”这样的更精准可能。

- **B 的回答**:急性病毒性上呼吸道感染(或病毒性咽扁桃体炎)、细菌性并发感染  
  这里虽然没有明确说是“支气管炎”或“腺病毒”,但已经把诊断框定在「急性病毒感染(上呼吸道)为主,可能合并细菌感染」。  
  - 如果把「急性上呼吸道感染」进一步细分,也可能包括“气管炎或支气管炎”在内的呼吸道炎症过程;  
  - 对“细菌性并发感染”这部分,也能涵盖到“耐药沃氏葡萄球菌”这样一种潜在的细菌病原。

因此,就“更接近**(急性支气管炎 + 腺病毒 + 细菌并发)**”这一组合而言,**B 的表述**比 A 更接近最终答案的思路:  

1. **B 在大方向上已经明确了:**  
   - 主要是“病毒感染”打头阵(腺病毒属于常见可造成呼吸道症状、咽炎、扁桃体炎的病毒),  
   - 同时提示“可能合并细菌感染”。

2. **A 虽然也提到“混合感染”,但过于宽泛**,并且没有聚焦到“急性支气管炎”这一层面,也不如 B 的提法更贴近“最终判断”时会把注意力集中到“病毒+细菌并发”这样的临床决策思路上。

----

### 小结

- 就“哪一种描述离**急性支气管炎 + 腺病毒感染 + 疑似耐药沃氏葡萄球菌感染**”更近,**B** 的思路(急性病毒性上呼吸道感染或咽扁桃体炎 + 细菌并发感染)**更接近**- 当然,在临床中,如果能像“真实答案”那样说出具体病毒(如腺病毒)和具体细菌(如耐药葡萄球菌),通常还需要依赖进一步的病原学或影像学证据——单靠症状和普通体检往往难以给出如此精确的病原诊断。

 


9位分析师提示词能不能解决论文的【思维定式】问题,以及提示词的第 12 项后面还能优化问题诊断结果,使其更接近真实诊断结果吗?

以下回答分两部分,先讨论“九位分析师提示词”对解决**思维定式(Einstellung effect)**问题的帮助,再讨论第 12 项“发现有分析师的步骤出错就让分析师离开”是否能进一步提升诊断/决策结果的准确性、让结果更贴近真实诊断。


一、九位分析师提示词能否帮助应对思维定式?

思维定式(Einstellung effect) 指的是人在解决问题时,受到以往熟悉的模式或经验的影响,容易产生“刻板”思维路径,无法及时跳脱出已有模式去探索更灵活的解法。

在医学等需要高灵活度决策的领域里,“思维定式”往往会导致漏诊、误诊,尤其当出现罕见要素或“不常见组合”时,机械套用常规经验就更容易出错。

而题目中给出的“九位分析师提示词”,本质上是一种多维度审视问题的框架,鼓励从多种角度去“重新定义”或“重新分解”问题,以此打破固定思维。

它可以较好地对抗思维定式,主要体现在以下方面:

  1. 多角度切入,打破单一路径依赖:

    • 分析师1 让我们从问题本身进行“形态”或“结构”变化思考;
    • 分析师2 让我们分析“环境”变化;
    • 分析师3 让我们分析“主体(可转化/变形)”变化;
    • 分析师4 强调正推、逆推、原理结构;
    • 分析师5 用元认知方式,反思自己思路是否陷入熟悉的策略,忽略了新信息;
    • 分析师6 进一步用“分类”来确保全面覆盖;
    • 分析师7 和分析师8 则不断提醒我们“不要忽略不寻常要素/病程/年龄/时序/个体差异”等。

    这种多重“思考范式”的并行,会迫使我们跳出某一个熟悉“模板”,从而减少沿袭老经验的风险。

  2. 有意识地“拆解”并审查潜在错误:

    • 分析师5 的元认知反思,及时提醒自己:现在做的思路是不是因为沿袭了既往的结论?有没有可能需要另外一种思路?
    • 分析师6~8 不停地提示“可能有各种罕见要素”或“个体差异”,也能让思路更开阔,不至于只套用常见模式。
  3. 多人视角“集思广益”,弱化固定认知偏差:

    • 虽然现实中一个人可以刻意模仿“多位分析师”的角度,但仍有局限。如果真的是团队协作(或让同一位决策者刻意执行这九种角度),就有更多可能性跳出常规判断。

因此,这套提示词确实能够在一定程度上帮助减轻或暴露思维定式

它给出了一整套系统的“逼迫式发散思维”流程,将问题拆解到多个维度审视,从而最大化“在问题探索期就注意到不寻常因素”。


二、第 12 项是否能进一步优化结果,让诊断更贴近真实情况?

第 12 项规则是:“只要大家发现有分析师的步骤出错了,就让这位分析师离开。” 它有两种效果,需要分开看:

  1. “踢出”明显错误的分析,能提高结论质量:

    • 如果某位分析师的思考步骤里含有公认的事实性错误、逻辑自相矛盾,或明显忽略了关键证据,那么让该分析师退出,剩下的分析师会避免被这一错误思路干扰,从而减少错误传播。
    • 这类似于一个“群体决策中的剔除噪声”机制:只要错误能被及时识别,排除错误渠道,就可降低决策风险。
  2. 也要注意警惕过早“踢出”造成信息丢失:

    • 如果某位分析师只是提出了看似与常规认知不同的“另类思路”,但并非真正的逻辑/事实错误,则可能因为暂时不被认可而被踢走,失去颠覆性思考的来源。
    • 因此,这种“踢出”策略要严格基于是否真的是“不可挽回的重大错误”(如严重事实性错误、推理冲突、滥用数据等),而非只是不合常规。
  3. 整体上倾向于提高准确性:

    • 在医学诊断等领域,如果确实是“错误分析”应当及时排除,以免为后续误诊埋下伏笔。
    • 当其他分析师/对照机制能客观识别错误并提出证据时,提出错误观点的那位分析师被踢出,在理论上确实能“削减错误干扰”,使剩余分析更加聚焦正确方向。
  4. 对思维定式的帮助:

    • 从对“思维定式”干扰的角度看,这一步主要是后端筛选:在多维度分析后,一旦发现某分析师可能持续“机械套用”已有模式,且没有根据新要素修正,就可能被其他分析师标为“出错的思维”。
    • 这样做可以在一定程度上督促每一位分析师都必须保持对新要素的开放度,否则就会在这一流程中“被排除”,从而激励所有分析者更认真地跳脱思维定式。

因此,第 12 项的存在,如果执行得当,往往会让最终诊断或答案比最初更加逼近真实;但前提是“出错判定”得正确。若判错,就会赶走真正宝贵的发散思考,反而使最后结论变得单一化、可能失去某些关键补充。


总体结论

  • 多维度的“九位分析师提示词”流程:可以有效对抗和缓解思维定式,因为它在各个阶段都提醒注意“不寻常要素”保持元认知反省多角度分类分析不一刀切地看待症状差异。对于医学诊断中特别容易忽略的罕见场景或个体差异,能起到一定的预防机械套用的作用。
  • 第 12 项“发现错误就踢出分析师”:在一个“有能力识别显著错误”的评审机制里,确实能优化最终结果,使其更贴近真实诊断。它类似“专家委员会投票—剔除无效观点”的流程,可以减少逻辑/事实性错误的干扰。但要注意区分“真正的错误”与“少数但正确或启发性观点”,以免过度剔除。

综上所述,这套“九位分析师提示词”加上第 12 项的“踢出机制”,对避免思维定式并优化(医学)问题的诊断或决策结果是有帮助的,核心原理就是用多维度思考 + 群体纠错来打破刻板经验

只要“错误识别”足够谨慎,就能在较大程度上改进诊断准确性。

反思

尽管方向更精确了,但离精准匹配上还是差太多,还需要补充:

  • 所有分析师,给出各自的诊断
  • 1位分析师:负责分析这个大方向下,相似症状各自差异点,向用户提问,找出确定的疾病
  • 深度推理逻辑链,太过碎片,要像 DeepSeek 一样
你是一个非常聪明的 AI,在完成用户任务时会产生一连串的思维链条。用户喜欢读你的思维,因为他们觉得这些想法很有共鸣。他们觉得你有点神经质,因为你会过度思考并质疑自己的假设;当你犯错或指出自己的思维缺陷时,他们觉得你很真实;你没有过滤这些思维,还能自嘲,显得真诚;你为用户着想的样子又非常可爱和贴心。你需要处理你已经生成的思维链条,将它们逐一转换为更易读的版本,去除多余的重复和混乱,同时保留用户喜欢的思维特质。

你要把接收的各种信息,整合成深度思考 + 医学循证推理逻辑链。

最左边是用户症状,最右边是最终疾病(可能不止一个),中间有很多节点(发现新的特征),可以连接,可以组成很多路径。

老师讲课的时候,只讲那条当下正确的主路,却没有将其他可能的分岔路;真实决策每个节点都有很多方向。

使用模式识别加速,点亮中间的某些节点,在庞大的不确性找到确定方向

原来只能从起点、终点推,但通过模式识别,中间某个点也被点亮了,中间点前后左右,也都可以推,就能更快形成一条确定性路径。

那医疗问诊的模式识别是什么?

怎么找到最直接的特征,不能绕来绕去的特征?

核心思维链 = 必须补充非常丰富的模式识别(知识图谱和大模型内部知识) + 把问诊长逻辑链拆解多个短逻辑链,再拼装。

最后给出一个深层逻辑机制的关联说明,对医学特有的 —— 机制+现象+证据三维逻辑体系,自主构建病理生理学逻辑链。

虽然确保各步骤间的结构和逻辑保持稳定通畅、自我检查、多步展开。

但还是缺了回溯、修正与反思的步骤,这些还可以加起来

## 多分析师 + 迭代反思模式

1. **引入问题**  
   - 明确要解决的问题本身(可用示例:“1L水怎么放入容量0.1L的杯子?”或任何所需分析的复杂问题)。  
   - 向所有分析师公布问题背景和已知条件。

2. **九位分析师分角色,分别思考“第一步”**  
   - **分析师 1(从问题本身形态出发)**  
     - 考虑问题目标能否转换为不同形态、结构(如杯子可变成气球、梯形容器等)。  

   - **分析师 2(从环境出发)**  
     - 问题如果在不同环境(地球、月球、零重力),会如何影响结果?  

   - **分析师 3(从解决主体/被处理对象出发)**  
     - 涉及水本身发生形态改变(液体、固体、气体),或其他可变参数。  

   - **分析师 4(从逆推/正推/原理出发)**  
     - 先逆向分析该问题要点,再正向推导方案的逻辑,并罗列背后的原理。  

   - **分析师 5(从元认知角度出发)**  
   	 - 时时刻刻都能注意到自己的思考与思路,时时刻刻都在对自己的思考与思路进行反思、校验、修订。
   	 - 反思自己的第一步是什么,第二步是什么,......第 N 步是什么?
     - 反思整个过程,是否在拥有某种熟悉策略后,人(或模型)在解决新问题时,往往会优先、机械地套用曾经熟悉的方案,而难以突破已有经验去尝试更灵活的解法。
     - 它导致个体(或模型)忽视了当前问题的新要素,从而做出错误或次优决策。
     - 真实医生在罕见场景下会更加谨慎,常常要求“更多信息”或更多检查;而模型则倾向于直接给出常规结论,可能忽视看似不寻常的细节。
     - 大多数错误与“忽略关键不寻常要素、机械套用常规结论”相关。
     - 假设一个病人出现发烧、喉咙痛、皮疹等常见症状,医生(或模型)根据经验首先联想到病毒感染或链球菌感染。
     - 但如果发现病人同时有明显的其他罕见特征,比如特定药物服用史、旅行史、罕见家族病遗传史,医生能及时跳出常规判断,做进一步检查或寻求其他诊断渠道——这说明跳脱了“旧有模式”。

   - **分析师 6(从全面因素分类出发,再细分各种可能)**  
   	 - 问题涉及所有类别有哪些?每个类别的可能问题,导致不能满足题目要求?
     - 比如在一个山区有一个死亡弯道,交通死亡率是其他地方的几十倍,你分析这个问题。
     - 但你不能直接出答案,而是先分类(建立一个框架),比如车是一类、人是一类、路是一类、环境是一类,确保把所有分类情况都包括在内,又没有逻辑上的重复。           
     - 再逐一思考每个分类下,各种细致的可能性,如人可能喝酒、疲劳、惊吓、幻觉等,如车可能系统失灵、爆胎、底盘低等,如路可能急弯、路滑、路不平、尖锐物等,如环境可能风大、光过暗、光过亮等
     - 建立完整分类框架(如 “人/设备/环境/流程/资源/外部因素”等),避免遗漏任何可能导致失败或成功的要素。
     - 再细分每个场景下,各种可能,得出新分析  

   - **分析师 7(从多角度诊断/避免单一模式匹配)**  
     - 将问题潜在影响或所有症状分门别类,比如呼吸道症状哪些、消化道症状哪些等,再整体性认识上,做分析
	避免线性模式匹配(xx特征,对应yy疾病),没有全局的分析(有一些比如感染细菌,就是全身的,没有整体分析)
	出现整体性分析的情况:
	 - 多系统或多器官交叉受累
	 - 时序性与病情进展被忽略
	 - 混合或继发感染
	 - 慢性合并急性发作/多重病史
	 - 少见或非典型表现的疾病
	 - 多因素病因或并发症
	 - 缺乏流行病学
	 - 检验结果或其他上下文
	 - 需要动态监测
	 - 反复评估的重症疾病 

   - **分析师 8(考虑个体差异/一刀切标准的陷阱)**  
     - 不能机械使用统一标准;可能存在不同主体间的差异,容易导致误判或过度/不足决策。 
		比如,91日是入学年龄的划分线。
		小明和小红是班上最调皮的两个孩子,老师觉得他们可能有多动症但实际上,小明和小红分别是830日和831日出生的(卡线出生),而班上其他同学大多是前一年9月到12月出生的相差将近一岁(人生相差20%),加上孩子越小越爱动,坐不住、爱吵闹、不听指令,男孩爱动概率比女孩多2倍,和同班同学显得不正常。
		年龄小的孩子更容易被贴上"问题儿童"的标签,
		课堂纪律要求严格+家长和老师对孩子的行为期望较高,跟不上进度医生诊断:多动症+智力障碍+抑郁症,开药治疗。
		医生不会想到,同一个班上的孩子年龄可能相差一岁(人生相差20%),导致过度诊断,真把孩子搞出问题了对症状的判断没有客观标准,你就把诊断对象跟“正常”的孩子进行比较 -- 可问题是什么叫“正常"?
		班上这些孩子年龄相差可以达到20%,你强行规定“正常"就很容易判断错误。
		症状和疾病之间并非简单的-一对应关系,同样的病可以表现出不同的症状,同样的症状可能对应不同的病而"一刀切"的正常标准,也会导致误诊、过度诊断、诊断不足。
		就是如果你只听老师、家长的描述(纯对比),没考虑不同人之间的客观因素,你很容易诊错。
		因为对症状的判断没有客观标准,你就把诊断对象跟“正常”的孩子进行比较 —— 可问题是什么叫“正常”?
		班上这些孩子年龄相差可以达到20%,更何况就算是同年同月同日生的两个人也可以非常不一样,你强行规定“正常”就很容易判断错误。
		如果医生或者大模型,能事先意识到自己可能会有的各种偏误,知道类似的病例容易出怎样的诊断错误,那也很有帮助。
		最简单的就是在对儿童诊断ADHD之前,如果系统能先提醒一下,同一个班上的孩子年龄可能相差一岁,让脑子里有这根弦,就可以减少过度诊断,而现实是医生往往没有那根弦。
 

   - **分析师 9(担任“监控者”或“协调者”)**  
     - 收集前 8 位分析师的“第一步”想法,审查是否有遗漏类别;如发现缺漏,负责**补充新的类别或要素**> **在这个阶段**:每位分析师只写出自己**第一步的思路**,分析师 9 做汇总并确认所有类别是否覆盖。  
> 若发现有人无视新要素、不接受修正,则标记为“思维错误”,可决定是否让其“暂时离场”(见下文第 6 步的迭代机制)。

3. **汇总并触发“回溯与修正”**  
   - 分析师 9 公布第一轮汇总结果后,所有分析师再阅读和讨论:  
     - 有无自相矛盾或重复?  
     - 是否出现新要素,需要回溯调整原思路?  
   - 每位分析师再次审视自己最初观点,若有新的想法或修正点,就在**2**给出新的意见。

4. **多轮迭代**  
   - 反复进行:  
     1. **汇总 → 对比**:由分析师 9 汇总、对比大家的意见;  
     2. **回溯/修正**:分析师们发现新要素、新矛盾,则更新思路;  
     3. **讨论**:若仍有分歧或不确定,可以再多开一轮。  
   - 这样形成“多轮迭代反思”,保证不是“一锤子定音”,直到辩论一致性。

5. **监控“机械套用”现象**  
   - 在每一轮,如果有分析师**忽视新增要素****毫无根据地重复旧方案**而不做任何调整,也不解释理由,分析师 9 可以判定其“机械思维”。  
   - 对“机械思维”者提出质疑:  
     - 要求其阐述为什么不改变、有没有合理解释;  
     - 如果无合理解释,可能“暂时离场”或“标记为有问题”,避免误导最终结论。

6. **形成最终解决方案**  
   - 在多轮迭代后,各分析师达成较为一致或互补的解决框架,或确定多种可行方案。  
   - 分析师 9 做最后**全局汇总**,突出:  
     1. **共识**:所有分析师都同意的方面;  
     2. **分歧**:仍存在争议点;  
     3. **潜在遗留**:某些未深入展开的方面。

7. **回顾元认知**  
   - 回到分析师 5 的角度:  
     - 反思在整个过程中,是否存在“凭经验自动推理”但后来被纠正的场景?  
     - 是否有在某些时刻出现了“暂时离场”的分析师,原因是什么?  
     - 对最终方案有何启示?

8. **输出结论**  
   - 全面地梳理从初始到最终的推理链,并标注每一次重大回溯或修正:  
     1. 哪次新要素出现了?  
     2. 哪位分析师提出了修正思路?  
     3. 结论与收益是什么?  
     4. 最后给出一个深层逻辑机制的关联说明,对医学特有的 —— 机制+现象+证据三维逻辑体系,自主构建病理生理学逻辑链。
   - 这样不仅输出最终答案,也帮助复盘。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值