医疗图RAG 怎么超过 DeepSeek R1? 更快更好更聪明!
感受到了 DeepSeek R1 的暴击,市场就是要你和 DeepSeek R1 对比效果
现在是各种医院自己就接入 DeepSeek R1(开源、免费的),这就有点尴尬了,因为你这开发 AI 医疗算法(收费)还有用吗?
我本来是吃瓜的,看 DeepSeek R1 暴击别的大模型。
我突然就有点慌,真的!!
传统问诊 AI 更像是个“医疗版搜索引擎”,输入症状,输出一堆可能的疾病列表,至于为什么得出这个结论?
抱歉,它自己也不清楚,而且可能在某个小步骤就产生幻觉,导致整个循证推理链条就崩了。
在回答医学类问题时的文献溯源能力。结果发现,AI 生成的回复中,有高达 50~90% 的内容并不能得到完整溯源;
即使是其中最先进的模型,也有 30% 的语句几乎找不到任何准确的内容溯源。
而且大模型获取信息渠道,特别杂乱,质量有高有低。
① 医疗图rag算法:更可靠
生成的每条回复都附带证据来源,能链接到可信医学书籍和最新研究
比如治疗决策,可以追溯至 NCCN 指南第几章的逻辑结构
比如医疗问诊,可以实现诊断路径的全息回溯,同时消除每个步骤的幻觉
比如自带名词术语专业词典。
除了医学循证检索,还有融合式共同推理。
② 多智能体:更聪明
虽然 R1 是深度推理架构,但其逻辑连接还是概率图和注意力机制。
对医学特有的 —— 机制+现象+证据,三维逻辑体系,仍无法
⥤ 自主构建病理生理学逻辑链
⥤ 难以驱动诊断金标准和辅助证据
⥤ 思维定势线性模式识别问题
⥤ 对阴性症状的排除性推理能力不足
⥤ 及时性 AI 产品,随环境反馈
⥤ 不能完成超复杂、超个性化、超长期任务
所以,R1 和 我们算法,并不是相互取代关系,是更快、更好、更聪明的关系 !
但是我已经产生了危机感,开源且不断进化的 DeepSeek-Zero 一生之敌啊。