一招通吃所有GraphRAG,自研最优 GraphRAG 算法,LLM幻觉问题迎刃而解!

论文:In-depth Analysis of Graph-based RAG in a Unified Framework

论文系统分析和比较各种“图式检索增强生成(Graph RAG)”方法,弄清楚它们各自的优点、缺点、适用场景构建/检索成本,并对未来改进提出建议。

对于上面这些图RAG算法,论文提出了统一所有图RAG算法的框架,分为 4 个阶段:

  • Graph Building:从文本构建图结构;

  • Index Construction:给图建索引(节点向量、关系向量、社区信息等);

  • Operator Configuration:决定用哪些检索操作符、怎样组合;

    把检索过程拆成很多原子动作(操作符),例如:

        检索节点操作符(根据问题关键词或向量匹配找节点),

        检索关系操作符(根据相关实体的关系或者一跳邻居),

        检索社区操作符(从聚类好的社区里找最相关部分),

        检索子图操作符(如k-hop path、Steiner tree等)。

  • Retrieval & Generation:实际拿问题去检索图,然后将检索到的信息放入LLM进行生成。

这样就能统一描述此前各种五花八门的图式RAG方法。

更离谱的是,这个框架可以自定义出新的 GraphRAG 算法,而且性能超过现在出名的 GraphRAG 算法。

我们来看看,怎么根据场景,自定义出新的 最优 GraphRAG 算法。

实验结果

下表包含了论文提到的主要基线(ZeroShot、VanillaRAG)、12 个具代表性的 Graph RAG 方法,以及作者实验里衍生或组合的新变体(VGraphRAG、CheapRAG):

论文总结了一套统一的分阶段框架 + 可组合“操作符”思路,能让你快速迭代或创造新变体。

不同场景针对性优化

留个图做封面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值