论文:In-depth Analysis of Graph-based RAG in a Unified Framework
论文系统分析和比较各种“图式检索增强生成(Graph RAG)”方法,弄清楚它们各自的优点、缺点、适用场景与构建/检索成本,并对未来改进提出建议。
对于上面这些图RAG算法,论文提出了统一所有图RAG算法的框架,分为 4 个阶段:
-
Graph Building:从文本构建图结构;
-
Index Construction:给图建索引(节点向量、关系向量、社区信息等);
-
Operator Configuration:决定用哪些检索操作符、怎样组合;
把检索过程拆成很多原子动作(操作符),例如:
检索节点操作符(根据问题关键词或向量匹配找节点),
检索关系操作符(根据相关实体的关系或者一跳邻居),
检索社区操作符(从聚类好的社区里找最相关部分),
检索子图操作符(如k-hop path、Steiner tree等)。
-
Retrieval & Generation:实际拿问题去检索图,然后将检索到的信息放入LLM进行生成。
这样就能统一描述此前各种五花八门的图式RAG方法。
更离谱的是,这个框架可以自定义出新的 GraphRAG 算法,而且性能超过现在出名的 GraphRAG 算法。
我们来看看,怎么根据场景,自定义出新的 最优 GraphRAG 算法。
实验结果
下表包含了论文提到的主要基线(ZeroShot、VanillaRAG)、12 个具代表性的 Graph RAG 方法,以及作者实验里衍生或组合的新变体(VGraphRAG、CheapRAG):
论文总结了一套统一的分阶段框架 + 可组合“操作符”思路,能让你快速迭代或创造新变体。
不同场景针对性优化
留个图做封面。