集合论[ 计算机数学专题(1) ]

中学老师说,集合论是现代数学的基础,很多定义都是基于集合论的。如,数列、函数都以集合研究的。

其实我觉得老师,讲的,毫无影响,所以,我就带您重新感受集合的魅力。

我整理了几个关于集合的问题给您。

  • 集合是啥 ?
  • 数学家,为什么研究集合 ?
  • 非解决不可的数学危机,该如何解决 ?
  • 集合和逻辑有隐喻,龙阳之好 ?
  • 一般化后,a_{n} 的极限 = ? ? ?
  • 无穷集合如何比较 ?
  • 如何证明实数集 R 不是可数集 ?

                                                                                           《目录》


集合是啥

     集合的定义:按照某种特征或规律结合(确定性)起来的事物的总体。里面的某种特征或规律就是元素,结合就是集合 如,

常用数集及其符号:

  • 自然数集合 >>  N (集合论包含0,数论不包含0)
  • 正整数集合 >>  N*、N+ (*\+都在N的右上角)
  • 整数集合     >>  Z
  • 有理数集合 >>  Q
  • 实数集合     >>  R
  • 复数集合     >>  C

集合的特点: 确定性、互异性、无序性

互异性,即集合的元素不重复。e.g.  { 1, 2, 3 } = { 1, 1, 2, 2, 3, 3 }

上面俩个集合虽然数量不同,但 ta们相等。因为集合,研究的是"都包含哪些元素",所以,并不会考虑元素个数。

如,判断一个元素是否在集合中,使用的是属于或不属于  \in or \notin。 格式 :元素  \in or \notin 集合。

 

无序性,即不考虑集合中元素排列顺序。

e.g. { 1, 2, 3 } = { 2, 1, 3 }

因为即使改变集合里元素的顺序,集合依然没变。

没有元素的集合,叫空集 { }。ta同于算术的0,设计出来是运算需要。

 

举个例子,理解集合间的关系 !

          最小的集合,是空集 { },空集可以理解为一个无限容量的塑料袋,里面可以放任何对象 >> 空集 = 空塑料袋

          次小的集合,有一个元素,{ {} } ,塑料袋里装这一个空塑料袋。

          次次小的集合,有俩个元素, { { {} } }  同上又多套了一个塑料袋。

第一层,是一堆东西的聚集,称为“集合”。这里所谓的“东西”,都不是“集合”。
第二层,是集合的聚集,称为“大集合”。也就是说,“大集合”是通常说的“集合的集合”。
第三层,是大集合的聚集,称为“超大集合”……


数学家,为什么研究集合 ?

           集合现在掌握,那么集合这种东西真的没看出来有什么用!看,小标题,我陷入了沉思。

           想不出个所以然来,干脆去吃面啦。

           在食堂和同学聊上了,ta说是处理无限。我坐在老地方,看着窗外。

               无限!?集合的元素是无限的?又想着。

           ta解释着,集合是靠无穷集合起家的。处理无穷集合时,用集合 + 逻辑处理。

               哦哦,逻辑是 命题 p、q啊、逻辑与p\wedgeq、逻辑或p\veeq呀、真、假、非吗。

           当然当然。

               我继续问道,集合、逻辑这完全是俩个不同的对象好吧。集合,是判断元素是否在集合里,逻辑,......  

               话说,逻辑是一种导向,我只知道ta广泛用于计算机硬件诶~    资料 : 组成CPU的开关网络 

           ''集合以 属于/不属于 为基础,逻辑以 真/假 为基础'',你看ta们是不是有点共通。

               诶,我很菜啊。。。还记得,描述集合的方法吗,就说一下,偶数怎么表示 ?

           表示偶数 这个简单,

           第一种,列举法 { 2,4,6,8,12,\cdots }

                          en,对滴。列举法学术名字是外延表示法, 名字无所谓的,但 ··· 有时候会有多个意思会引发问题,ta很高兴我还记得。

           第二种,描述法,{ n | n是2的倍数 } 或 { 2n | n\inN } 或 { n | n是偶数 } 或 { n | 2k, 且k\inZ }

                          哇,题目刷出来的,这么多?都对了,描述法也叫内涵表示法,处理无穷集合时,我们便采用这个表示法。可是,这种方法也会有一个问题,你看你采用描述法可以列出许多示例,如果命题没有限制条件,那么也会产生矛盾(某个命题和ta的否定都成立)

            会吗,什么矛盾?隐隐约约的明白,但还是接着问。

            要说清楚,就不得不说 一段 风花雪月,岁月变迁,沧海桑田 的往事。


非解决不可的数学危机,该如何解决。     

        

{ 康托尔 } = { 集合之父 }

           1918年,康托尔在一家精神病院去世,此前的ta,因为被数学圈驱赶和谩骂得了精神分裂症。对于集合研究的成果,直到20年后才被接受,那时年轻的数学家依据几个算术公理为集合论打好地基后,准备重新打造一个数学大厦。自此,数学分支不再按照用途分类,而是依照研究对象所在集合的特征来定义。这时的数学大大的前进一波,代数、几何、分析等等,都用集合论和逻辑来研究,用数学研究数学,因此数学的研究对象范围呈数量级拓展。

  • 跟图形相关的,丈量土地,剪裁衣服 >> 几何。
  • 根据已知数求未知数列算式 >>  代数。
  • 往空中抛两个银币,有多大的可能它们都是正面呢?>> 做概率论。

           喔,这才是集合真正的作用吧!我表示很惊奇。

           之一,之一,ta有点不屑的答道。

           1902年,英国数学家罗素寄给康托尔一封信。这就是著名的罗素悖论(理发师悖论):

       村子里有一个理发师,脾气很怪,他工作起来有一条规矩,就是只给那些不给自己刮胡子的人刮胡子。

           这听上去挺有道理的,因为自己给自己刮胡子了,就用不着找理发师了。

       如果这个理发师如果遵循这条原则,那ta要不要给自己刮胡子呢 ?

  •       如果理发师不给自己刮胡子,他就属于那类“不给自己刮胡子的人”,所以照规矩,他应该给自己刮胡子,于是矛盾产生了。
  •       如果他给自己刮胡子呢?他又属于“给自己刮胡子的人”,所以他就不该给自己刮胡子。

用集合语言表示  ,设集合R是由一切不属于自身的集合组成,那么, R包含于R是否成立 即 R = { x | x 不属于x } ?

因为集合,使用的是 \in or \notin  研究 "都包含哪些元素", 所以,这里我们假设 { x | x \notin x } 是一个集合,设 R 表示这个集合。

  • R = { x | x \notin x }

我们研究的 R 是不是ta本身的元素,即 R 是不是集合  { x | x \notin x } 的元素。

上面我们假设了 { x | x \notin x } 是一个集合,那么 R 只有俩种状态,一种是属于,另一种是不属于。以逻辑解释,命题即不是真就是假。命题: 可以判断真假的数学概念,如十进制中 1 + 1 = 2 命题是真,1 + 0 = 10 命题是假。

  • R  ?  { x | x \notin x }

我们选择一个证明方法 --- 反证法假设要证明的命题不成立,从而推导出矛盾的证明方法。

如果证明结果和假设一样,则假设成立命题为真。

第一种状态,假设 R \in { x | x \notin x } ,那么命题 R \in { x | x \notin x } 是命题。R也是 { x | x \notin x } 的元素。R满足命题 x \notin x,

  • \notin R 为真。

可用 { x | x \notin x } 代换右边的 R,代换后命题依然为真

  • R \notin { x | x \notin x }

可是,我们假设 R \in { x | x \notin x } 为真的情况,ta俩矛盾诶~。

第二种状态,假设  R \in { x | x \notin x } 为命题,则 R 不是集合 { x | x \notin x } 的元素。R不满足命题 x \notin x。

  • \notin R 为假 即 R \in R 为真。

继续用 { x | x \notin x } 代换右边的 R,代换后命题也依然为真

  • \in { x | x \notin x }

可是,我们假设 R \in { x | x \notin x } 为假的情况,ta俩也是矛盾。

所以,无论 R \in { x | x \notin x } 是真是假,都有矛盾。

听懂了吗,这就是罗素悖论。说起来,这就是描述法命题没有限制条件,而引起的矛盾。

哦哦!??

之后数学家们再次完善集合论,把这个坑给填了。创建了一系列公理,如:

  • 空集存在公理,存在一个集合,可以没有元素。
  • 无穷公理,存在一个集合,可以有无穷多的元素。
  • 集合相等公理,一个集合完全由它的元素决定,如果两个集合含有相同的元素,那么两个集合是相等的。
  • ... 

所以,您现在知道 数学家,为什么研究集合 ?的问题了吗 ?我猜,会。 


集合的好搭档,逻辑~

因为罗素悖论是单凭集合中最重要的 "\in" 产生矛盾的。防止矛盾,只需要加限制条件,以描述法举例。

设定一个命题范围,集合有一个全集 U ,之前描述法的范围 : { x | P(x) } , 现在描述法范围是 : { x | x \in P(x) \wedge U }。

\wedge :是集合的一种运算,取P(x)和U相同的元素。

 ''集合以 属于/不属于 为基础,逻辑以 真/假 为基础'',你看ta们是不是有点共通。不只是有点,如果采用描述法表述命题,集合和逻辑是最佳 CP ... 

看好了,

                                 集合            逻辑
全集 U真 true
空集 { }假 false
补集 Cu逻辑非 !
并集 \cup逻辑或 \vee
交集 \cap逻辑与 \wedge
集合 P = { 2n | n \in Z }命题 P
集合 Q = { 2n+1 | n \in Z }命题 Q

 

那么是不是用在集合的公式也能用于逻辑,如 德·摩根 公式...

  • Cu A  \cap  Cu B = Cu (A \cup B)
  • Cu A  \cup  Cu B = Cu (A \cap B)
德 · 摩根公式
                集合      逻辑
Cu A  \cap  Cu B = Cu (A \cup B)!P  \wedge  !Q = !(P \vee Q) 
Cu A  \cup  Cu B = Cu (A \cap B)!P  \vee  !Q = !(P \wedge Q)

其实  德·摩根 公式 是同一种写法, g( h(x), h(y) ) = h( f(x,y) ) 。

分别列出 g(x,y) 、f(x,y) 、h(z) , x\y\z只是一个被映射的对象模版。等下解释映射!

德·摩根公式
   g(x,y)   f(x,y)  h(z)     h( f(x,y) ) = g( h(x), h(y) )
 x  \cup  y x  \cap  y Cu zCu A  \cup  Cu B = Cu (A \cap B)
 x  \cap  y x  \cup  y Cu zCu A  \cap  Cu B = Cu (A \cup B)
 x  \vee  y x  \wedge  y  ! z    !P  \vee  !Q = !(P \wedge Q)
 x  \wedge  y x  \vee  y  ! z    !P  \wedge  !Q = !(P \vee Q) 

 


a_{n} 的极限 = ? ?

    埃利亚学派古希腊哲学家巴尔尼德强调:"能被思想的就能存在" 存在本身的说法引起了很多人的批评与嘲笑。

    芝诺为了替老师辩护,发展出一种特殊的哲学方法 --"归谬法"。

     所谓的“归谬法”就是您跟别人在辩论的时候,您先暂时接受别人说的是对的,然后再通过举例、论证来说明,最后证明结论是荒谬的,这叫做“归谬法”。    

    双方辩论时,您证明自己的说法有时候更不容易,还不如先暂且接受对手是对的,然后再说他那个对的说法最后会得到荒谬的结论。

    芝诺:既然我老师说没有变化,所以我就要告诉你们,你们以为有变化,是因为你们认为变化出现,变化代表很多东西存在,从这个变成那个,有多样性;同时变化一定在时间、空间里面展开,所以你们认为有时间、空间还有多元的东西。那我现在告诉你们,你们所认为的三点:有变化、有时间、有空间都是错误的。

  为此,芝诺举了四十几个 "悖论",如著名的:

  阿喀琉斯(Achilles)是有名的飞毛腿,跑得飞快的,但是他如果让乌龟先走一步,他就永远追不上乌龟了。

  而我们学习的是,与之类似的问题......

   证明 0.999··· = 1。

          1 = 1,这个不用证明了,可以直接用。

  • 1  =  1

     将等式俩边同时除以 3 ,左边写成小数形式,右边写成分数形式,

  • 0.333··· =  \frac{1}{3} 

    俩边同时 *3 ,得

  • 0.999··· = 1

  证毕,您觉得这样证明对不对呢 ?

      是对滴,有许多证法,这是不标准的证法之一,说不标准是因为证后还是让人不明所以,证明后更加混乱了。

       我们可以把 0.999···999,组成一个无穷集合P。

       P = {a_{1} , a_{2}, a_{3} , ... , a_{n}}

       a_{1} = 0.9

       a_{2} = 0.99

       a_{3} = 0.999

       a_{n} = 0.999\cdots 9

那么 n 越大,就越接近 1,但 无论 n 多大,a_{n} 一定小于 1。 

  • 0.999···9 < 1
  • 0.999···   = 1

想一想,这是为什么 ?

    0.9,0.99,0.999,0.999···9, 一直延伸会无限的接近 1,在一个数列中,0.999··· 就是 1 的书写形式

  • 0.999··· 表示 1

即使,  0.9,0.99,0.999,0.999···9一直延伸,1也是出不来的,0.999···表示的就是 这个出不来的 1。

所以,

  • 0.999···9 < 1 ,0.999···9 即是集合的元素,也是数列中的数。
  • 0.999···   = 1, 0.999···不是集合的元素因为ta超出了全集U,又不是数列中的数,而是数列去向的目的地。
  • 也可以这样简单理解,1 = \frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\frac{9}{10000}+... , 这样一直加下去就等于 1 。

所以, 0.999··· = 1, 证毕。 

如果使用一般化方法,把具体数   0.9,0.99,0.999,0.999···9 抽象为 a_{1} , a_{2}, a_{3} , ... , a_{n},把 1 抽象为 某个数 记为 ?, 

  • n --> ∞ 时 a_{n} --> ?

因此 ,a_{n} 的极限 = ? ?是数列指向的目标,数列经过 无限操作 后依然不能达到的目标呢!

我得到了全世界,为什么就是得不到你 ! ! !

我还想问问, 0.999··· = 1.000···  成立吗?

阅读延伸

哈代曾记载:现代数学家从未想到,一堆数学符号竟然需要通过定义为其赋值,才会具有某种“含义”,因此,即使对于18世纪最杰出的数学家而言,这个发现也不能等闲视之。他们非常不习惯这样的定义,每次都要指出“在这里,X的意思是指Y”,这让他们觉得十分别扭。柯西之前的数学家几乎不会提出“我们应该怎么定义1–1+1–1 +……”这样的问题,而会问“1–1+1–1 +……是多少”。这样的思维习惯让他们陷入了毫无意义的困惑与争议(常常会演变成辱骂)中。

Hanskeng:数学最让我受益之处,在于ta高强度地训练了一种思维方式——“定义式思维”。定义的过程,本质上是在回答一个事物是什么、不是什么的过程,是建立事物的边界、锁定事物本质特征的过程。

Hanskeng:数学作为一个学科的美丽,恰在于ta是 "定义式思维" 的极致。当您不知道一个概念从哪里来,您绝不可能知道后续的推演往哪里去。一切源自最初始的定义,基于严谨清晰的概念、寥寥几条公理,严丝合缝推演出一个学科大厦,过程中不存在任何误差、试验。


无穷集合的比较,这很拉风...

        康托尔使用 "对角论证法" 证明了存在不可数集合...

        侧耳倾听,希尔伯特带您体验一下无限概念。

        ?希尔伯特旅馆?:在这个旅馆,ta每一个房间都有一个编号,从 1 开始直到 ∞,如:

希尔伯特旅馆房间
1234567···

         有一天,希尔伯特旅馆住满了,忽然,来了一个新旅客也要开一间房。酒店经理听到后说,没问题,开的房间是 1 号房。

   这时,原 1 号房间的旅客住到 2 号房,原 2 号房的旅客住到 3 号房,后面的也是如此,所有旅客住在 原房间号+1 的房间号。传统旅馆     这时候在理想环境是不能住人了,但希尔伯特旅馆可以,因为ta是希尔伯特旅馆,因为ta是 无穷多 的。

         欸不是,住满了吗!没有极限吗 ?不管怎样,这扯淡的旅馆,不可理喻。

         在无穷集合里,存在一些有悖直觉的事情,ta就像希尔伯特旅馆一样不可思议。要完全理解,还需要一个工具 "映射"。

          摊开双手,双手指尖挨到一起:拇指对拇指、食指对食指...

双射

        

         映射的定义:让某些东西与某个集合的元素对应的方法。

         映射的情况类似函数概念的一般化,ta们的概念区别也是高考考点啊

                函数:是一个数集,且定义域和值域是一一对应的关系(一个x唯一对应一个y);

                映射:是不是数集都可以,定义域和值域是不是一一对应都可以,具体的对应关系如下;

                满射: 没有多余元素的,可以重复映射。

               单射:  有多余的元素的,不可以重复映射。

                双射:没有多余元素的,也不重复的映射。

       双手合十,是一个双射。17世纪,伽利略以双射研究集合时,因为思维的停滞就没有搞懂俩个无穷集合的比较。

其中一个集合是所有自然数,另外一个则是所有自然数的平方数。

      今天,我不打算直接回答这个问题。今天的猪脚是,整数集和自然数集(集合论包含0),可以发现,俩个集合都是无穷集合,那么谁大谁小 ?

       如果放在中学,这就是一个小到不能再小的送分题,N \in Z ,因为 Z 包含 N,那么肯定是 Z 大 N 小。

       现在,我们抛开这些知识,回到伽利略的年代,跟着ta去思考。有时候,听别人说,数学(考试)掌握公式就好。其实,我觉得这样学习方式是在创造意义上无意义且无聊的,对我意义不大。因为我们并没有体会到式子的设计和世界。直接利用公式,只是一种机械计算,所以对数学的兴趣也培养不起来。


      怎样比较双手手指是否相等 ?

              一一对应即可:摊开双手,双手指尖挨到一起:拇指对拇指、食指对食指 , 所有手指对齐后,并没有发现左右手有多余的手指,所以双手手指相等很清晰。

       分析起来,这是有限的情况。现在在无穷(无限)集合里,整数集按照与自然数集一一对应,就发现整数集和自然数集是一样多也是双射。因为我们能说出任意自然数或整数,ta所对应的哪个整数或自然数。

                        对应规则:    Z = { ···,-3,-2,-1,0,1,2,3,··· }  从 0 开始,先右(正数)后左(负数)

N(自然数集)1234567···2k-12k···
Z(整数集)01-12-23-3···1-kk···

    既然是双射,那么 N = Z,可,可是自然数集只是整数集的一部分而已。17世纪时,伽利略也认为,在 "无限" 这个条件下,不能说个数在双射中是相等的。

     伽利略 ,一代英才,也在这里折戟沉沙了... 不过ta是物理学、天文、哲学家, 影响不大。

     2 个世纪后,戴德金也遇到这个情况,不过ta的想法不一样。回顾一下伽利略的想法,

  • 在 "无限" 条件下,不能说,整体和部分在双射中是相等的。

    戴德金,

  • "无限" 是指整体和部分之间存在双射。 

1874年,德国哲学家 康托提出,自然数、自然数中的偶数、甚至一切有理数,都是一样多的。

原理就是一一对应,两个集合的元素如果能一一对应,那这两个集合的元素个数就一样多。

数学上这叫 "可数"。一个包含无限个元素的集合只要是 "可数" 的,就能跟自然数一一对应,ta的元素个数就跟自然数一样多。有理数的集合也是可数的。有理数,包含自然数、自然数的平方、整数、等等,这些都是相等的。

有理数 + 无理数(无限不循环小数) = 实数。无理数的特点是不能写成分数的形式,也就是不能用两个整数相除得到。比如 \sqrt2\pi 都是无理数。

具体证明在最后,数学上有个结论:无理数,是“不可数”的。


也就是说,实数不能跟自然数做一一对应。虽然自然数和实数都有无限多个,但是这两个无限不是一个级别 —— 实数比自然数要 多得多。如果你说自然数是“无穷多”,那实数就是“不可思议的无穷多的无穷多”。


计算机与数学的区别

在计算机里,所有的数都是 "可数的",比如,

  • \pi 我们使用TA,一般只定义为 3.1415926, 到了一定长度一定会停下,虽然您可以精确到第 n 位,但只有您停下来,ta就是可数的有理数,而不是 \pi
  • CPU是一个开关网络。晶体管要么是开要么就是关,没有半开半关的状态。
  • 算法也是一步一步执行,并没有半步的情况。

所以,数学和计算机的区别之所在,计算机没有 "不可数" 的东西。少了这个,要做某些事情是注定不能成功的:用目前的计算机完全模拟真实的世界或宇宙。

有没有一件事是人一定能做,而计算机一定不能做的 ?

  • 目前认为没有。

有没有一件事是真实世界里发生了,而计算机一定不能模拟的 ?

  • 目前认为没有。

 ……

  • 然而计算机仍然不能解决所有问题。这个世界就是这么有意思,即古怪也矛盾。

哥德尔不完备定理的世界观

           后来,康托尔,创立了现代集合论并提出了集合的势和序的概念。可惜当时没数学家认同,直到后来康托的集合论被希尔伯特(天才中的天才,图灵发明图灵机便是受ta的影响)赞言,无数曾经调侃集合论是有趣的病理现象的数学家,重新加入研究的行列中。而后,好不容易建立的集合论,又被罗素大神 "咻“ 的一下,弄跨了。这也是数学史上著名 "第三次数学危机"。这次危机,也的确说明了。康托尔在搭建集合论体系时,有自相矛盾的地方。依照康托尔的集合论推出来的东西也是飘的,也许并不正确。

因此,大量大量的数学家投身其中,只为重新完善集合论的基础。弄一个没有自相矛盾的集合。那段时间,我们称ta为公理化集合论的时节。公理化:以尽量少的基本概念、基本命题出发,这些都是基础得不能再基础,这些知识也是没法证明的,命中注定ta们就是正确的。从这些知识出发,推演出后续的整个数学大厦。著名的欧式几何系统,仅有五条公理,但,是完备和自洽的。

后来呀,公理化集合论,又被 哥德尔不完备定理 证明 至少还有一些结论是无法判定对错的。不过,数学家们,也不接受。虽然都知道,哥德尔不完备定理 是正确的。

哥德尔不完备定理 :大型机构都有一本手册,比如学校的学生手册,里面的一切行为都是有章可循,有理所依。您也许觉得手册成千上万的规定,是很完备的。可如果采用哥德尔不完备定理,您就知道,总会有一些行为是即属于学生手册的,又是这个手册无法判断的。拿计算机来说,因为计算机是可数的,ta的算法也没有半步的概念,采用计算机算法的各种规则也并不能对所有算法做出判断。那时候,必须跳出来即在算法之外看算法。

哥德尔不完备定理 :只能用于 不封闭 的实数系统。如,欧式几何就是哥德尔不完备定理证明不完备的。

为不完备定理说句公道话,不完备定理是现代逻辑学的基本定理。ta并没有让数学 "漏洞百出",以前由数学证明的定理,依然还是定理。那些即无法证明又不能反证的定理也不妨碍学者研究,哪怕是 "不完备定理" , 数学的本身的含义不同,因此 "数学本身" 不回受到 "不完备定理" 的支配。总之,"不完备定理" 帮助数学家们再次打开了一扇新世界的门,知道了有一些事情是不必要去做的。

哥德尔不完备性定理:一个有,有限个公理的数学系统 *不能独自证明* ta的自洽性,ta的灵魂大概是 "纸短情长",ta的理念也许是 用数学性论证以研究数学性论证本身。


思维的停滞,如何破解 ?

         古代文明比比皆是神话和英雄,来解释自然现象,

                第一位科学家,泰勒斯以观察和思考打破了人们对神的迷信。

         自然界里并不存在负数,如,不存在 +1=0的自然数,

                  因此,引入了负数,-1 + 1 = 0。

         毕达哥拉斯学派认为万物皆数,当然只存在有理数,

1 + 1 等于 什么数的平方 ?

                    不存在平方后等于 2 的有理数 !那就将其作为无理数 \sqrt2 的定义即可。                

         数系里,并不存在平方后等于 -1 的实数,

                       酒鬼说,这还不简单 那就将其作为虚数单位 i 的定义。

         无穷集合不存在整体和部分的双射,

                          不不,这才是无限集合的定义。

当一条路走到了悬崖边,对面是无论如何都走不过去了,就是要发明/发现新的东西,让我们飞过去...... 


康托尔的大招

           证明实数集 R 不是可数集。

           我解释一下,可数集: 能用自然数给所有集合编号的集合。

                       e.g. 有限集都是可数集,因为元素数量有限就可以给集合中所有元素都编号。

之前, N 与 Z 的一一对应

大概,我们会回想到之前的整数集与自然数集的比较。这个自然数集就是一个编号: 1、2、3、2k......

可是,我们再看看有限集的定义:有限集都是可数集,因为元素数量有限就可以给集合中所有元素都编号。

而我们的命题是,证明实数集 R 是不可数集,即自然数不能给实数编号,哪怕自然数是无数个,用上所有自然数也不能给实数编上号。

我们可以只取实数一部分来对应整个实数,如 我们取 0 ~ 1 之间的所有实数。

用数学表达出来,实数集合 R = { x | 0 < x < 1 } 。

还记得,证明罗素悖论时运用的反证法吗 ?

反证法:假设要证明的命题不成立,从而推导出矛盾的证明方法。

现在我们假设,实数集合 R = { x | 0 < x < 1 } 是可数集。

如果证明结果和假设一样,则假设成立。

随意取一个 R 中的元素,即为 R_{n} = 0. 31415926···

再用数学的方式描述这个具体的元素,即 R_{n} = 0. R_{n,1},~R_{n,2},~R_{n,3},~R_{n,4},~R_{n,5},~R_{n,6},~R_{n,7},~R_{n,8},~R_{n,9}····

这是什么意思呢 ?哈,,,考验观察力...

e.g.

 R_{n,1} 是 R 的第 n 位元素的第 1 位小数 ,即 3

 R_{n,2} 是 R 的第 n 位的元素的第 2 位小数 ,即 1

 R_{n,3} 是 R 的第 n 位的元素的第 3 位小数 ,即 4

......

那么重点来了,我们把 R 里面所有的数都用这种方法表示,

  123456 
R_{1}0.R_{1,1}R_{1,2}R_{1,3}R_{1,4}R_{1,5}R_{1,6}······
R_{2}0.R_{2,1}R_{2,2}R_{2,3}R_{2,4}R_{2,5}R_{2,6}······
R_{3}0.R_{3,1}R_{3,2}R_{3,3}R_{3,4}R_{3,5}R_{3,6}······
R_{4}0.R_{4,1}R_{4,2}R_{4,3}R_{4,4}R_{4,5}R_{4,6}······
R_{5}0.R_{5,1}R_{5,2}R_{5,3}R_{5,4}R_{5,5}R_{5,6}······
R_{6}0.R_{6,1}R_{6,2}R_{6,3}R_{6,4}R_{6,5}R_{6,6}······
\vdots \vdots\vdots\vdots\vdots\vdots\vdots\ddots

    把对角线上的数挑出来,e.g.

                      R_{1,1}、   R_{2,2}、   R_{3,3}、  R_{4,4}、   R_{5,5}、   R_{6,6}、 ···

    把 ta 们 R_{n,n} 组成一个数列, 记为 r_{n}

                     约定一个规则,如果 R_{n,n} (数列 r 中第 n 个元素)

  •                                                              是奇数(1、3、5、7、9),r_{n} = 2,
  •                                                              是偶数(0、2、4、6、8),r_{n} = 1。

这样后,所有自然数 n 都会使等式成立:  r_{n} \neq R_{n,n} 。 

              p.s. r_{n} 不是 1 就是 2,而奇偶设计刚刚好避免相同的情况。

e.g. 

       R{n,n} = 0. 3 1 4 1 5 9 2 6···

             r_{n} = 0. 2 2 1 2 2 2 1 1···

还有、还有啊, 0 < r_{n} < 1 是任何时候都成立的。

在开始假设实数集合 R = { x | 0 < x < 1 } 是可数集时的集合描述法, 那么 r_{n} \in x 。

现在我们假设 r_{n} 在 R 中的第 y 行,这样的话  r_{n} = R_{y} 

又因为 r_{n} 是由 R_{y,y} 组成,所以看看 R 中的第 y 行和第 y 列。

 

  1234···y······
R_{1}0.R_{1,1}R_{1,2}R_{1,3}R_{1,4}···R_{1,y}·····
R_{2}0.R_{2,1}R_{2,2}R_{2,3}R_{2,4}···R_{2,y}······
R_{3}0.R_{3,1}R_{3,2}R_{3,3}R_{3,4}···R_{3,y}······
\vdots \vdots\vdots\vdots\vdots \vdots······
      \ddots  
R_{y}0.R_{y,1}R_{y,2}R_{y,3}R_{y,4}···R_{y,y}······
  (r_{1})(r_{2})(r_{3})(r_{4})···(r_{y}) 
         
\vdots \vdots\vdots\vdots\vdots\vdots\vdots\ddots

       从表格中,观察到  r_{y}  =  R_{y,y} 。

      但与之前的条件相互矛盾,因此,由反证法得出的结论 :由 0 < x < 1 的所有实数构成的集合不是可数集合。

      由满足 0 < x < 1 的所有实数构成的集合,与真正的实数集合 R 是一一对应的关系。既然 0 < x < 1 的所有实数构成的集合不是可数集合,则真正的实数集合 R 同也 !!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值