Actually_xxl
码龄7年
关注
提问 私信
  • 博客:1,135
    1,135
    总访问量
  • 7
    原创
  • 1,150,395
    排名
  • 5
    粉丝
  • 0
    铁粉

个人简介:NLP beginner and Lifelong learner

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2018-02-18
博客简介:

qq_41742779的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得3次评论
  • 获得8次收藏
创作历程
  • 7篇
    2021年
成就勋章
TA的专栏
  • 数据结构与操作系统
    1篇
  • CS230
    1篇
  • ML
    5篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数据结构-线性表

一、线性表的定义顺序表的定义#define maxsize 100typedef struct{​ ElemType data[maxsize];​ int length;}链表的定义typedef struct LNode{​ ELemType data;​ struct LNode *next;}LNode, *LinkList二、线性表的增删改查1、插入问题顺序表:第i节点status ListInsert(Slits &L, int i,Elemtype e)
原创
发布博客 2021.08.01 ·
236 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

CS230 Full-cycle DL progjects

CS230 Full-cycle DL progjectsSteps of a ML project/application1.select a problem(supervised learning)Some import factors:Interest, Data availability, Domain knowledge(using your domain knowledge), Utility(实用), Feasibility.2.get dataHow many days will
原创
发布博客 2021.06.25 ·
117 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

ML_chapter4支持向量机

Machine LearningChapter4支持向量机学习总结于吴恩达教授 cs229, SVM = optimal margin classifiers + kernel trick一、函数边界vs几何边界1.函数边界1) 训练样本的函数边界给定一个训练集 (x(i),y(i))(x^{(i)},y^{(i)})(x(i),y(i)) ,我们用下面的方法来定义对应该训练集中训练样本的边界函数 (w,b)(w,b)(w,b):r^(i)=y(i)(wTx(i)+b)=y(i)θTx(i)\
原创
发布博客 2021.06.20 ·
116 阅读 ·
3 点赞 ·
1 评论 ·
1 收藏

ML_chapter3生成学习算法

Machine LearningChapter3生成学习算法学习总结于吴恩达教授 cs229一、生成学习vs判别学习这里所说的生成学习与判别学习均属于分类任务中的学习算法。1.判别学习算法判别学习算法(discriminate learning algorithms),该学习算法的模型为p(y∣x;θ)p(y|x;\theta)p(y∣x;θ)。即先根据已有的训练数据,训练区分不同种类的边界,在预测过程中,根据预测对象的特征向量落入的划分区域,给出相应的预测值。(已知xxx,求对应的$y $的概
原创
发布博客 2021.05.03 ·
181 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

ML_chapter2线性模型

Machine LearningChapter2线性模型学习总结于《机器学习》周志华、cs229、CSDN大佬们的博客一、似然与概率1.似然(likelihood)L(θ)=P(y^∣x;θ)L(\theta)=P(\hat{y}|x;\theta)L(θ)=P(y^​∣x;θ)y^∣x\hat y |xy^​∣x : data, fixed thingθ\thetaθ : parameters, varingif we view this thing as a function of th
原创
发布博客 2021.05.01 ·
221 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

ML_chapter1.2模型评估

Machine Learningchapter1概论 1.2学习总结于《机器学习》周志华、CSDN大佬们的博客一、误差 error1.训练误差 training error也称经验误差,是指学习器在训练集上的误差Remp(f^)=1N∑i=1NL(yi,f^(xi))R_{emp}(\hat{f}) = \frac{1}{N}\sum_{i=1}^{N}L(y_i,\hat{f}(x_i))Remp​(f^​)=N1​i=1∑N​L(yi​,f^​(xi​)), NNN是训练样本容量,LLL是损
原创
发布博客 2021.04.02 ·
166 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

ML chapter1 概论1.1 基础分类

Machine LearningChapter1概论 1.1一、监督学习vs无监督学习学习总结于cs229 P11.监督学习 supervised learning在训练过程中,你将获得输入XXX和标签YYY并同时输入两者,学习算法将找到一个映射,对于给定新的XXX,将其映射到最合适的输出YYY。XXX(数据)−−>Y-->Y−−>Y(标签)1.回归问题 Regression Problem(YYY连续)2.分类问题 classification Problem(YYY
原创
发布博客 2021.03.31 ·
95 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏