- 博客(7)
- 收藏
- 关注
原创 数据结构-线性表
一、线性表的定义顺序表的定义#define maxsize 100typedef struct{ ElemType data[maxsize]; int length;}链表的定义typedef struct LNode{ ELemType data; struct LNode *next;}LNode, *LinkList二、线性表的增删改查1、插入问题顺序表:第i节点status ListInsert(Slits &L, int i,Elemtype e)
2021-08-01 20:51:30 231 1
原创 CS230 Full-cycle DL progjects
CS230 Full-cycle DL progjectsSteps of a ML project/application1.select a problem(supervised learning)Some import factors:Interest, Data availability, Domain knowledge(using your domain knowledge), Utility(实用), Feasibility.2.get dataHow many days will
2021-06-25 17:09:53 114
原创 ML_chapter4支持向量机
Machine LearningChapter4支持向量机学习总结于吴恩达教授 cs229, SVM = optimal margin classifiers + kernel trick一、函数边界vs几何边界1.函数边界1) 训练样本的函数边界给定一个训练集 (x(i),y(i))(x^{(i)},y^{(i)})(x(i),y(i)) ,我们用下面的方法来定义对应该训练集中训练样本的边界函数 (w,b)(w,b)(w,b):r^(i)=y(i)(wTx(i)+b)=y(i)θTx(i)\
2021-06-20 23:04:52 114 1
原创 ML_chapter3生成学习算法
Machine LearningChapter3生成学习算法学习总结于吴恩达教授 cs229一、生成学习vs判别学习这里所说的生成学习与判别学习均属于分类任务中的学习算法。1.判别学习算法判别学习算法(discriminate learning algorithms),该学习算法的模型为p(y∣x;θ)p(y|x;\theta)p(y∣x;θ)。即先根据已有的训练数据,训练区分不同种类的边界,在预测过程中,根据预测对象的特征向量落入的划分区域,给出相应的预测值。(已知xxx,求对应的$y $的概
2021-05-03 17:43:19 178 1
原创 ML_chapter2线性模型
Machine LearningChapter2线性模型学习总结于《机器学习》周志华、cs229、CSDN大佬们的博客一、似然与概率1.似然(likelihood)L(θ)=P(y^∣x;θ)L(\theta)=P(\hat{y}|x;\theta)L(θ)=P(y^∣x;θ)y^∣x\hat y |xy^∣x : data, fixed thingθ\thetaθ : parameters, varingif we view this thing as a function of th
2021-05-01 21:33:48 218
原创 ML_chapter1.2模型评估
Machine Learningchapter1概论 1.2学习总结于《机器学习》周志华、CSDN大佬们的博客一、误差 error1.训练误差 training error也称经验误差,是指学习器在训练集上的误差Remp(f^)=1N∑i=1NL(yi,f^(xi))R_{emp}(\hat{f}) = \frac{1}{N}\sum_{i=1}^{N}L(y_i,\hat{f}(x_i))Remp(f^)=N1i=1∑NL(yi,f^(xi)), NNN是训练样本容量,LLL是损
2021-04-02 10:58:35 165
原创 ML chapter1 概论1.1 基础分类
Machine LearningChapter1概论 1.1一、监督学习vs无监督学习学习总结于cs229 P11.监督学习 supervised learning在训练过程中,你将获得输入XXX和标签YYY并同时输入两者,学习算法将找到一个映射,对于给定新的XXX,将其映射到最合适的输出YYY。XXX(数据)−−>Y-->Y−−>Y(标签)1.回归问题 Regression Problem(YYY连续)2.分类问题 classification Problem(YYY
2021-03-31 14:28:03 92
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人