最简真分数个数

本文介绍了一个程序,用于计算给定多个正整数时能组成的最简真分数的组合数量。通过输入一系列不同的整数,程序将输出所有可能的最简真分数对的数量。
/*题目描述:
给出 n 个正整数,任取两个数分别作为分子和分母组成最简真分数,编程求共有几个这样的组合。
输入描述:
有多组测试数据,每组测试数据有两行。
第一行为一个整数 n (n <= 600)。
在第二行中有 n 个以空格分隔的不同的整数(大于等于 1 且小于等于 10, 000)。
当 n = 0 时,程序结束,不需要处理这组数据。
输出描述:
每行输出最简真分数组合的个数
样例输入:
7
3 5 7 9 11 13 15
3
2 4 5
0
样例输出:
17
2
*/
#include<iostream>
using namespace std;
//求两个数的最小公倍数
int judge(int a, int b) {
	if (a%b == 0) {
		return b;
	}
	else {
		return judge(b, a%b);
	}
}
int main() {
	int n;
	cin >> n;
	while (n != 0) {  //条件是n不等于0;
		//申请动态数组
		int *p;
		p = new int[n];
		for (int x = 0; x < n; x++) {
			cin >> p[x];
		}
		//判断
		int count,count1=0;
		//做n-1次循环
		for (int i = 0; i < n - 1; i++) {
			for (int k = i + 1; k < n ; k++) {  //用每一个去除剩下的每一个
				count=judge(p[i], p[k]);
				if (count == 1) { //如果p[i]与p[k]没有公倍数就返回1;
					count1++;  //计数的,有多少个最简真分数
				}
			}
		}
		cout << count1 << endl;
		delete[] p;   //删除申请的动态数组
		cin >> n;//再次输入
	}
	return 0;
}


要在 Java 中实现真分数的相关功能,如判断、生成等,可以按以下思路实现。真分数是指分子小于分母,分子和分母的大公约数为 1 的分数。 ### 判断两个数是否能构成真分数 ```java public class SimplestProperFraction { // 求大公约数 public static int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } // 判断两个数是否能构成真分数 public static boolean isSimplestProperFraction(int numerator, int denominator) { return numerator < denominator && gcd(numerator, denominator) == 1; } } ``` ### 生成给定分母的所有真分数 ```java import java.util.ArrayList; import java.util.List; public class SimplestProperFraction { // 求大公约数 public static int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } // 判断两个数是否能构成真分数 public static boolean isSimplestProperFraction(int numerator, int denominator) { return numerator < denominator && gcd(numerator, denominator) == 1; } // 生成给定分母的所有真分数 public static List<String> generateSimplestProperFractions(int denominator) { List<String> fractions = new ArrayList<>(); for (int numerator = 1; numerator < denominator; numerator++) { if (isSimplestProperFraction(numerator, denominator)) { fractions.add(numerator + "/" + denominator); } } return fractions; } public static void main(String[] args) { int denominator = 10; List<String> result = generateSimplestProperFractions(denominator); if (result.isEmpty()) { System.out.println("NO"); } else { for (String fraction : result) { System.out.println(fraction); } } } } ``` ### 生成给定一组数能构成的所有真分数 ```java import java.util.ArrayList; import java.util.List; public class SimplestProperFraction { // 求大公约数 public static int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } // 判断两个数是否能构成真分数 public static boolean isSimplestProperFraction(int numerator, int denominator) { return numerator < denominator && gcd(numerator, denominator) == 1; } // 生成给定一组数能构成的所有真分数 public static List<String> generateAllSimplestProperFractions(int[] numbers) { List<String> fractions = new ArrayList<>(); int n = numbers.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (isSimplestProperFraction(numbers[i], numbers[j])) { fractions.add(numbers[i] + "/" + numbers[j]); } } } return fractions; } public static void main(String[] args) { int[] numbers = {1, 2, 3, 4, 5}; List<String> result = generateAllSimplestProperFractions(numbers); if (result.isEmpty()) { System.out.println("NO"); } else { for (String fraction : result) { System.out.println(fraction); } } } } ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值