最简真分数序列

该博客介绍了如何从给定的非负整数中找出能构成最简真分数的分子和分母。最简真分数是指分子小于分母且无法约分的分数。对于输入的正整数n和n个非负整数,博客提供了如何生成所有符合条件的最简真分数,并按特定顺序排列。例子展示了具体的操作过程和输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源

元培-From Whf

描述

所谓最简真分数是指分子小于分母,且不能约分的分数。给定 n(1 < n < 200)个非负整数(每个整数不超过3位),哪两个整数分别作为分子和分母能够构成最简真分数。输出所有的最简真分数组合;若没有,则输出NO。

关于输入

第1行为正整数个数n
其后为n个非负整数,空格间隔。

关于输出

输出所有最简真分数,分子小的排在前面;若分子相同,分母小的排在前面。各分数之间用逗号间隔。
若没有,则输出NO

例子输入

8
3 7 11 0 5 13 15 9

例子输出

3/5,3/7,3/11,3/13,5/7,5/9,5/11,5/13,7/9,7/11,7/13,7/15,9/11,9/13,11/13,11/15,13/15

#include<stdio.h>

int chu(int a, int b) {
   
	int temp = 0;
	if (a > b) {
   
		temp = a;
		a = b;
		b = temp;
	}
	int flag = 0;
	for (int i = 2; i <= a; i++)
	{
   
		if (b%i == 0 && a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值