***素数筛***
素数筛顾名思义就是从一堆数中筛选素数。
首先介绍的是一种比较容易理解但复杂度不是友好的筛素数方法。
首先从2开始将他的倍数都筛掉(在这里是素数将isprime[i]值设为1,然后不是素数设为0,另外初始化所有值为1)。
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
int isprime[1000000+10];
int prime[1000000+10];
int c;//统计素数个数
void Prime1(int n) {
memset(isprime,1,sizeof(isprime));
isprime[0]=isprime[1]=0;//0,1不是素数,初始化为0
for(int i=2;i<n;i++){//从2开始
if(isprime[i]) {
prime[c++]=i;
for(int j=i+i;j<n;j+=i){
isprime[j]=0;//将它的倍数全部设为0(不是素数)
}
}
}
}
int main(){
int n=100;
Prime1(n);//举个小例子,统计一百以内素数
for(int i=0;i<c;i++) printf("%d\n",prime[i]); //打印素数
}
理解之后会发现,这个方法会有一些漏洞,因为当排除10不是素数时,10作为2的倍数,也作为5的倍数被重复排除,所以复杂度会比较大,所有有了下面的线性筛,时间复杂度为o(n);
为避免重复的筛选,我们引入一个原理,每个合数必有一个最大因子(不包括它本身) ,用这个因子把合数筛掉。这个就是线性筛的核心了。另外我也普及一下合数的概念:
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。 与之相对的是质数,而1既不属于质数也不属于合数。 最小的合数是4。
比如前面提到的10,用之前的方法,我们筛了俩次,而这一次我们就用一次就筛掉它,因为10的最大因子为5所以我们就用5筛掉10.
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
int isprime[1000000+10];
int prime[1000000+10];
int c;
void Prime2(int n) {
memset(isprime,1,sizeof(isprime));
isprime[0]=isprime[1]=0;
for(int i=2;i<n;i++) {//依旧从二开始
if(isprime[i]) prime[c++] = i;
for(int j = 0; (j<c && i*prime[j]<n);j++) {
isprime[i*prime[j]]=0;
if(!(i%prime[j])) break;//利用每个合数只有一个最大因子,然后退出循环停止筛选
}
}
}
int main(){
int n=100;
Prime2(n);//举个小例子,统计一百以内素数
for(int i=0;i<c;i++) printf("%d\n",prime[i]);
}
至此讲完,还有什么不会的可以评论区留言解答;