堆的应用

堆的应用一:优先队列

有点队列具体使用:
1. 合并有序小文件

  1. 假设我们有 100 个小文件,每个文件的大小是 100MB,每个文件中存储的都是有序的字符串。我们希望将这些 100 个小文件合并成一个有序的大文件。这里就会用到优先级队列。
  2. 整体思路有点像归并排序中的合并函数。我们从这 100 个文件中,各取第一个字符串,放入数组中,然后比较大小,把最小的那个字符串放入合并后的大文件中,并从数组中删除。
  3. 假设,这个最小的字符串来自于 13.txt 这个小文件,我们就再从这个小文件取下一个字符串,放到数组中,重新比较大小,并且选择最小的放入合并后的大文件,将它从数组中删除。依次类推,直到所有的文件中的数据都放入到大文件为止。

这里我们用数组这种数据结构,来存储从小文件中取出来的字符串。每次从数组中取最小字符串,都需要循环遍历整个数组,显然,这不是很高效。有没有更加高效方法呢?

  1. 这里就可以用到优先级队列,也就是堆。我们将从小文件中取出来的字符串放入到小顶堆中,那堆顶的元素,也就是优先级队列队首的元素,就是最小的字符串。我们将这个字符串放入到大文件中,并将其从堆中删除。然后再从小文件中取出下一个字符串,放入到堆中。循环这个过程,就可以将 100 个小文件中的数据依次放入到大文件中。

2. 高性能定时器

  1. 假设我们有一个定时器,定时器中维护了很多定时任务,每个任务都设定了一个要触发执行的时间点。定时器每过一个很小的单位时间(比如 1 秒),就扫描一遍任务,看是否有任务到达设定的执行时间。如果到达了,就拿出来执行。
    在这里插入图片描述
  2. 但是,这样每过 1 秒就扫描一遍任务列表的做法比较低效,主要原因有两点:第一,任务的约定执行时间离当前时间可能还有很久,这样前面很多次扫描其实都是徒劳的;第二,每次都要扫描整个任务列表,如果任务列表很大的话,势必会比较耗时。
  3. 针对这些问题,可以用优先级队列来解决。按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。
  4. 这样,定时器就不需要每隔 1 秒就扫描一遍任务列表了。它拿队首任务的执行时间点,与当前时间点相减,得到一个时间间隔 T。
  5. 这个时间间隔 T 就是,从当前时间开始,需要等待多久,才会有第一个任务需要被执行。这样,定时器就可以设定在 T 秒之后,再来执行任务。从当前时间点到(T-1)秒这段时间里,定时器都不需要做任何事情。
  6. 当 T 秒时间过去之后,定时器取优先级队列中队首的任务执行。然后再计算新的队首任务的执行时间点与当前时间点的差值,把这个值作为定时器执行下一个任务需要等待的时间。
  7. 这样,定时器既不用间隔 1 秒就轮询一次,也不用遍历整个任务列表,性能也就提高了。
堆的应用二:利用堆求Top K

Top K 的问题抽象成两类。一类是针对静态数据集合,也就是说数据集合事先确定,不会再变。另一类是针对动态数据集合,也就是说数据集合事先并不确定,有数据动态地加入到集合中。

针对静态数据

  1. 针对静态数据,如何查找前 K 大数据呢?我们可以维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。
  2. 遍历数组需要 O(n) 的时间复杂度,一次堆化操作需要 O(logK) 的时间复杂度,所以最坏情况下,n 个元素都入堆一次,时间复杂度就是 O(nlogK)。

针对动态数据

  1. 针对动态数据求得 Top K 就是实时 Top K。怎么理解呢?举一个例子。一个数据集合中有两个操作,一个是添加数据,另一个询问当前的前 K 大数据。
  2. 如果每次询问前 K 大数据,如果基于当前的数据重新计算的话,那时间复杂度就是 O(nlogK),n 表示当前的数据的大小。实际上,我们可以一直都维护一个 K 大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前 K 大数据,我们都可以立刻返回给他。
堆的应用三:利用堆求中位数

借助堆这种数据结构,我们不用排序,就可以非常高效地实现求中位数操作。

  1. 需要维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据

    也就是说,如果有 n 个数据,n 是偶数,我们从小到大排序,那前 2n​ 个数据存储在大顶堆中,后 2n​ 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储 2n​+1 个数据,小顶堆中就存储 2n​ 个数据。
    在这里插入图片描述

  2. 如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;否则,我们就将这个新数据插入到小顶堆。

  3. 此时出现不符合前面约定的情况:如果 n 是偶数,两个堆中的数据个数都是 2n​;如果 n 是奇数,大顶堆有 2n​+1 个数据,小顶堆有 2n​ 个数据。这个时候,我们可以从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。在这里插入图片描述

  4. 我们就可以利用两个堆,一个大顶堆、一个小顶堆,实现在动态数据集合中求中位数的操作。插入数据因为需要涉及堆化,所以时间复杂度变成了 O(logn),但是求中位数我们只需要返回大顶堆的堆顶元素就可以了,所以时间复杂度就是 O(1)。

  5. 利用两个堆不仅可以快速求出中位数,还可以快速求其他百分位的数据,原理是类似的。

问题场景1:如何快速求接口的 99% 响应时间?
  1. 维护两个堆,一个大顶堆,一个小顶堆。假设当前总数据的个数是 n,大顶堆中保存 n99% 个数据,小顶堆中保存 n1% 个数据。大顶堆堆顶的数据就是我们要找的 99% 响应时间。
  2. 如果这个新插入的数据比大顶堆的堆顶数据小,那就插入大顶堆;如果这个新插入的数据比小顶堆的堆顶数据大,那就插入小顶堆。
  3. 在每次新插入数据之后,都要重新计算是否还符合 99:1 这个比例。如果不符合,就将一个堆中的数据移动到另一个堆,直到满足这个比例。移动的方法类似前面求中位数的方法。
  4. 通过这样的方法,每次插入数据,可能会涉及几个数据的堆化操作,所以时间
    复杂度是 O(logn)。每次求 99% 响应时间的时候,直接返回大顶堆中的堆顶数据即可,时间复杂度是 O(1)。
问题场景2:有一个包含 10 亿个搜索关键词的日志文件,如何快速获取到 Top 10 最热门的搜索关键词呢?

处理这个问题,有很多高级的解决方法,比如使用 MapReduce 等。但是,如果我们将处理的场景限定为单机,可以使用的内存为 1GB。
首先统计搜索关键词出现的频率,可以构建散列表、平衡二叉树或一些支持快速查找、插入的数据结构,来记录关键词级出现的次数。

  1. 构建散列表,扫描10亿个搜索关键词,如果存在,次数+1,如果不存在,就插入到散列表中,次数记录为1。
  2. 然后建立大小为10的小顶堆,遍历散列表,依次取出关键词和次数,然后和堆顶进行对比,如果比堆顶次数多,就替换堆顶

出现的问题:假设10亿条数据不重复的有1亿条,每个关键词的长度为50个字节,那需要5GB的内存空间,而散列表要避免频繁冲突,不会选择太大的装载因子。

  1. 根据哈希算法特点,将10亿条搜索关键字通过哈希算法分片到10个文件中。创建10个空文件00,01,02,03,…,09,遍历这10亿个关键词,通过哈希值同10取模,得到结果就是关键词被分到文件编号。
  2. 对10亿个关键词分片之后,每个文件只有1亿个关键词,去掉重复的,可能就有1000万个关键词,每个关键词平均50个字节,所以总大小就是500MB,1GB内存完全可以放得下。
  3. 针对每个包含1亿条搜索关键字的文件,利用散列表和堆,分别求出TOP10,然后把10个Top10 放在一起,然后取出100个关键词中,出现次数最多的10个关键词,就是Top10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值