自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 动态功能网络提取方法

与传统的基于滑动窗口的dFC方法不同,无窗口方法期望在不预定义时间段的 情况下捕捉功能连接的时间变化,这种方法允许更连续和灵活地探索连接模式随时 间变化的情况。CAP分析是一种数据驱动的分析技术,它使用全脑数据在每个时间点的空间分布和激活程度作为聚类分 析的输入,以识别整个大脑中反复出现的相对CAP状态,从而得到共激活的大脑瞬 态状态。基于窗口的方法通常使用滑动时间窗口来将ROIs或网络的代表性时间序列分割为不同的短时信号,然后基于每个窗口内的短时信号计算ROIs或网络之间的功能连接。

2024-06-23 15:49:08 797

原创 动态脑功能网络的滑动窗口分析相关问题

最近刚开始学习动态脑功能网络,对于这方面的了解还比较少,这篇文章用做大家共同学习和提高自己的理解。基础知识:独立成分分析(ICA),ICA是一种从这些信号的线性混合中恢复基础信号的方法,并利用高阶信号统计量来确定一组彼此最大程度独立的分量。我们主要利用空间独立成分分析,提取出复杂的脑网络中的独立成分,,然后再选取出感兴趣的成分,对其进行在时间上的滑动窗口分析。图1图1引用自《Tracking Whole-Brain Connectivity Dynamics in the Resting S.

2021-08-29 21:40:45 4201 8

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除