最近刚开始学习动态脑功能网络,对于这方面的了解还比较少,这篇文章用做大家共同学习和提高自己的理解。
基础知识:独立成分分析(ICA),ICA是一种从这些信号的线性混合中恢复基础信号的方法,并利用高阶信号统计量来确定一组彼此最大程度独立的分量。我们主要利用空间独立成分分析,提取出复杂的脑网络中的独立成分,,然后再选取出感兴趣的成分,对其进行在时间上的滑动窗口分析。

图1引用自《Tracking Whole-Brain Connectivity Dynamics in the Resting State》2014年,作者为Elena A. Allen。
图1给出了从我们进行扫描受试者和预处理后的静息状态下的时间-体素矩阵,然后利用组独立成分分析获得受试者的组独立成分,并对每一个受试者进行back-reconstruct获得TCs和SMs,得出这个之后再进行对TCs或者SMs进行滑动窗口分析。
近年来,“静息状态”受到了广泛关注,并通过多种方式进行了研究,包括正电子发射断层扫描(PET)、脑磁图(MEG)和脑电图(EEG),尽管目前主要的方法是功能磁共振成像(fMRI)。静息状态功能磁共振成像(RS-fMRI)是一种非侵入性方法,通过无明确任务的扫描检查FC和血氧水平相关(BOLD)信号的其他特性。FC通过诸如不同区域的时间序列之间的相关性、协方差和互信息等度量进行量化,其中所检查的时间和空间尺度由感兴趣的问题确定。

图2引用自《Tracking Whole-Brain Connectivity Dynamics in the Resting State》2014年,作者为Elena A. Allen。
左图(静息FC):对于每一个受试者,根据TC图每两个成分的时间信号计算协方差,最后得到一个协方差矩阵【主要用来描述两个成分之间的相关性】。
右图(动态FC):对于每一个受试者,使用合适的一个窗口大小进行滑动,保守地选择窗口大小以对应于0.75/f,其中f为时间过程的最低频率分量,步长为1TR,得到若干个窗口,从加窗段来计算协方差矩阵,然后对矩阵施加惩罚以提高稀疏性。

图2引用自《A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia》2010年,作者为Ünal Sako˘glu。该图为脑功能网络分析的步骤和静态FNC与动态FNC的区别所在,总体来说,通过扫描得到所有受试者4D的FMRI数据然后进行数据预处理获得2D的数据,然后进行组空间独立成分分析确认感兴趣的成分,动态FNC分析基本上是静态FNC分析的重复,除了动态FNC的输入是时间窗的、短的、分量时间过程,在实验期间代表许多不同的时期,而不是包含整个实验期间的整个分量时间过程。
总结一下dFNC(动态脑功能网络),主要就是将获得TCs通过一个窗口进行分段计算,以获得大脑之间各个成分之间的连通性随时间变化的关系,目前已经应用与精神疾病等方面的应用。。

图4引自《Tracking Whole-Brain Connectivity Dynamics in the Resting State》2014年,作者为Elena A. Allen。一个动态脑功能网络的分析图,其中显示了3名代表性受试者的FC动态。其中A1为受试者124样例的FC动态图,A2为突出显示的连接为PreCG[2] Thalamus [15](浅蓝色),L MOG[89]至R PoCG[10](红色),L IPL[76]至MOG[80](橙色),ACC[26]至R IPL[67](深蓝色),以及MiFG+SFG[48]至L AG[75](绿色),从图中可以了解到两个成分之间的相关性随着时间过程发生了变化,A3显示的窗口是聚类分析中使用的示例的子样本FC频谱。
滑动窗口分析是探索FC变化的简单方法,但在应用该方法和解释结果时必须考虑几个关键问题。一个限制是,功能磁共振成像时间序列中的大多数噪声源是非平稳的,并且随着时间的推移会引起FC的变化,即使使用最彻底的预处理技术,这种噪声也可能无法完全消除。其次,白噪声以及具有与功能磁共振成像时间序列相匹配的统计特征的合成时间序列,可以在常见的功能磁共振成像度量中表现出与实际功能磁共振成像数据中观察到的一样大的波动。
另一个问题涉及窗口大小的选择。理想情况下,窗口应足够大,以允许对FC进行稳健估计,并解析信号中感兴趣的最低频率,但是这种情况下由于神经信号的自发波动性,会导致我们测量出来的一种状态不准确,因为有可能并不是从一种状态转移的另一种状态,有可能是经过了若干次转移。但随着窗口大小的缩小,估计的FC的SNR降低,因为(1)计算FC的可用时间点较少,(2)测量主要由功能磁共振成像时间序列中越来越高的频率控制,其中,由于血流动力学响应的低通特性,BOLD信号的SNR显著降低。
那么对于出现的这种问题,Elena A. Allen在2014年提出了基于马科夫链的状态转移矩阵,对可能出现的状态转移进行概率计算。

图5引自《Tracking Whole-Brain Connectivity Dynamics in the Resting State》2014年,作者为Elena A. Allen。图B中可以明显看出,在第三行显示的,从t时刻到t+1时刻状态转移的可能性最小,因此可以认为在状态在第三行停留的可能性时最高的。状态3的平稳概率超过0.4,远大于其他状态的概率,其范围约为0.05到0.15,这意味着从长远来看,系统很可能处于状态3。因此需要重点研究第三行的状态。
同时还有另外的学者提出的全新的估计dFNC的方法,如MTD(梯度导数乘法)和WAST(共享轨迹加权平均),

图6出自《Weighted average of shared trajectory: A new estimator for dynamic functional connectivity efficiently estimates both rapid and slow changes over time》 最左边图表示了两个时间序列, 和
。这里时间序列的长度是3。中间的图显示了一个二维空间,其中
为水平轴,
为垂直轴,从这个图中可以明显的看出两个时间序列存在一个角度,其实这个角度就是所定义的
。右图显示了红色和蓝色的2个梯度向量,以及它们的角度和大小的图形含义。这里的角度显示了在每个时间点,一个时间序列相对于另一个时间序列的变化程度。如果角度接近于零,则意味着当
发生变化时,
的变化不会太大。另一方面,如果角度接近45°,则意味着
的变化与
的变化非常相似,则说明两个时间序列高度相关。详细算法这里不在写。
文中有理解不到位的地方,欢迎各位大佬指正,刚开始学习这方面的内容,动态脑功能网络需要学习的还很多,还需要进一步学习。
参考文献:
《Weighted average of shared trajectory: A new estimator for dynamic functional connectivity efficiently estimates both rapid and slow changes over time》Ashkan Faghiria,b,l.2020年
《Dynamic functional connectivity: Promise, issues, and interpretations》R. Matthew Hutchison 2013年
《A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia》Ünal Sako˘glu 2010年
《Tracking Whole-Brain Connectivity Dynamics in the Resting State》Elena A. Allen 2014年