矩阵 COO、CSC、CSR【10月3日】

 COO、CSC、CSR的计算不仅在scipy上有 在pytorch的torch.sparse上也有

ref : scipy中稀疏矩阵coo_matrix, csr_matrix 的使用_haoji007的博客-CSDN博客

(2条消息) pytorch稀疏张量模块torch.sparse详解_zeeq_的博客-CSDN博客_torch.sparse

理解Compressed Sparse Column Format (CSC)_weixin_34216036的博客-CSDN博客

Compressed Sparse Row(CSR) Compressed Sparse Column (CSC)_unchainedmelody的博客-CSDN博客

1.CSC、CSR 都是一些啥:

Scipy 配合numpy 的一些基础使用和原理解释

2. 为什么,CSR有哪些优点:(下述) 

优点:

1:高效地按行切片。
2:快速地计算矩阵与向量的内积。
3:高效地进行矩阵的算术运行,CSR + CSR、CSR * CSR等。

3,为什么前向传播要CSC反向传播要CSR


我的CSR:(待补充),只是一张图,我要给他整理一下然后写出对应的实现代码:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值