1446B Catching Cheaters(LCS变形)
Codeforces Round #683 (Div. 2, by Meet IT)
D. Catching Cheaters
题意:给两个字符串 A A A 和 B B B,长度分别为 n n n 和 m m m,定义 S ( C , D ) = 4 ∗ L C S ( C , D ) − ∣ C ∣ − ∣ D ∣ S(C, D) = 4*LCS(C, D) - |C|-|D| S(C,D)=4∗LCS(C,D)−∣C∣−∣D∣,问从 A A A 和 B B B 中各取一个子串能得到最大的 S S S 是多少。
范围: 1 ≤ n , m ≤ 5000 1 \le n, m \le 5000 1≤n,m≤5000。
分析: 显然 L C S LCS LCS 可以进行预处理,从而得到各个子串之间的 L C S LCS LCS,问题主要存在于如何确定两个子串。
如果暴力地在两个字符串中进行选取字符串的话,时间复杂度至少为 O ( n 2 m 2 ) O(n^2m^2) O(n2m2),肯定是不能接受的。但是通过观察可以发现其中存在着类似一维最大子段和的问题,因此只需要处理 A A A 的子串以 i i i 结尾 B B B 的子串以 j j j 结尾的情况,时间复杂度为 O ( n m ) O(nm) O(nm),设计 d p [ i ] [ j ] dp[i][j] dp[i][j] 如下:
① A [ i ] = = B [ j ] A[i] == B[j] A[i]==B[j],那么 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 4 − 2 = d p [ i − 1 ] [ j − 1 ] + 2 dp[i][j] = dp[i-1][j-1] + 4 - 2 = dp[i-1][j-1]+2 dp[i][j]=dp[i−1][j−1]+4−2=dp[i−1][j−1]+2
② A [ i ] ≠ B [ j ] A[i] \ne B[j] A[i]=B[j],那么 d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) − 1 dp[i][j] = max(dp[i-1][j], dp[i][j-1]) - 1 dp[i][j]=max(dp[i−1][j],dp[i][j−1])−1
这是在 L C S LCS LCS 的基础上进行设计的,不过还需要融入最大子段和的思想,因此让所有 d p [ i ] [ j ] ≥ 0 dp[i][j] \ge 0 dp[i][j]≥0,这样在 d p dp dp 的过程中对于前面对自身没有贡献的部分就完成了剔除。
Code:
#include <bits/stdc++.h>
#define int long long
#define double long double
using namespace std;
inline int read()
{
int s = 0, w = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-')
w = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9')
s = s * 10 + ch - '0', ch = getchar();
return s * w;
}
const int MAXN = 5000 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const double PI = acos(-1.0);
int n, m, k;
int dp[MAXN][MAXN];
signed main()
{
n = read(), m = read();
string s1, s2;
cin >> s1 >> s2;
int ans = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (s1[i-1] == s2[j-1])
{
dp[i][j] = dp[i-1][j-1] + 2;
}
else
{
dp[i][j] = max(dp[i-1][j], dp[i][j-1]) - 1;
}
dp[i][j] = max(0ll, dp[i][j]);
ans = max(ans, dp[i][j]);
}
}
cout << ans << endl;
return 0;
}
【END】感谢观看