1447D Catching Cheaters

题目链接

题意

给定一个长度为n的字符串A,和一个长度为m的字符串B(字符串中仅包含小写字母)

CD分别为AB的一个子串

输出最大的 S ( C , D ) S(C,D) S(C,D)

S ( C , D ) = 4 × L C S ( C , D ) − ∣ C ∣ − ∣ D ∣ S(C,D)=4 \times LCS(C,D) - |C| - |D| S(C,D)=4×LCS(C,D)CD
LCS( Longest Common Subsequence,最长公共子序列 )

思路

dp[i][j]表示为 S ( C , D ) S(C,D) S(C,D)的值,其中

  • C是以A[i]结尾的子串
  • D是以B[j]结尾的子串

A[i]不等于B[j]dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) - 1
A[i]等于B[j]dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 2)

注:dp[i][j]不能为负数

状态转移方程

if(A[i] == B[i])
	dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 2);
else
	dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) - 1;

AC的代码

#include<bits/stdc++.h>
using namespace std;

int main() {
	int n, m, res = 0;
	string A, B;
	cin >> n >> m >> A >> B;
	vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
	for (int i = 1; i <= n; i++) {
		char a = A[i - 1];
		for (int j = 1; j <= m; j++) {
			char b = B[j - 1];
			if (a == b) {
				dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 2);
			}
			else {
				dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) - 1;
			}
			dp[i][j] = max(dp[i][j], 0);// 贡献值不能为0
			res = max(res, dp[i][j]);
		}
	}
	cout << res << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值