题意
给定一个长度为n
的字符串A
,和一个长度为m
的字符串B
(字符串中仅包含小写字母)
C
,D
分别为A
,B
的一个子串
输出最大的 S ( C , D ) S(C,D) S(C,D)
S
(
C
,
D
)
=
4
×
L
C
S
(
C
,
D
)
−
∣
C
∣
−
∣
D
∣
S(C,D)=4 \times LCS(C,D) - |C| - |D|
S(C,D)=4×LCS(C,D)−∣C∣−∣D∣
LCS( Longest Common Subsequence,最长公共子序列 )
思路
dp[i][j]
表示为
S
(
C
,
D
)
S(C,D)
S(C,D)的值,其中
C
是以A[i]
结尾的子串D
是以B[j]
结尾的子串
当A[i]
不等于B[j]
时dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) - 1
当A[i]
等于B[j]
时dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 2)
注:dp[i][j]不能为负数
状态转移方程
if(A[i] == B[i])
dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 2);
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) - 1;
AC的代码
#include<bits/stdc++.h>
using namespace std;
int main() {
int n, m, res = 0;
string A, B;
cin >> n >> m >> A >> B;
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
for (int i = 1; i <= n; i++) {
char a = A[i - 1];
for (int j = 1; j <= m; j++) {
char b = B[j - 1];
if (a == b) {
dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 2);
}
else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) - 1;
}
dp[i][j] = max(dp[i][j], 0);// 贡献值不能为0
res = max(res, dp[i][j]);
}
}
cout << res << endl;
return 0;
}