深度学习之鸡兔同笼问题

本文通过一个独特的视角,使用深度学习解决经典的数学问题——鸡兔同笼。作者首先尝试用Excel模拟简单神经网络,然后用Python+TensorFlow建立三层神经网络,通过训练数据实现模型收敛,最终成功预测了未见过的测试数据,展示了深度学习在解决传统问题上的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

作为小学九大毒瘤之一的鸡兔同笼问题,在没学过二元一次方程之前估计是难倒了不少人,站在程序员的角度,鸡兔同笼问题其实有很多解法,最常见的有穷举法,公式法等,而今天我所要探索的方法是深度学习,估计我是第一个这么干的。

问题引入

我们总是会忽略某些习以为常的规则。想象一下,假设我们不知道鸡有两只脚,兔有四只脚,那么鸡兔同笼问题还会是那么容易吗?

深度学习的本质就是在有限的数据和结果之间寻找一条通用的逻辑算法,这个算法在生活中我们一般叫经验。因此本文以鸡兔同笼问题为例,给定数据和结果,让计算机在其中寻找通用的规则(鸡有两只脚,兔有四只脚)。

值得注意的是,不要妄想使用已有的规则来对神经元连接权重和阈值进行解释或修缮,否则只会适得其反。

第一次尝试(失败经验)

鉴于这种规则过于简单,神经网络我打算采用最简单的,一个输入层、一个隐藏层、一个输出层的简单结构,物理结构如下:
在这里插入图片描述
这么简单的神经网络结构用tensorflow做好像有点浪费,因此我最开始采用Excel表进行模拟,如下图:
在这里插入图片描述
通过不断替换权重数值和阈值(用宏做的),迭代301次之后,损失函数(误差平方)曲线如下:

在这里插入图片描述
因为逆向传播只使用了一组数据,所以损失函数曲线抖动是可以理解的。虽然图像直观地展示了学习的过程,但遗憾的是最终网络也未能收敛,且实际预测也具有较大误差,原因可能是数据没给够(只给了三组数据),或者是隐藏层神经元数量较少。

第二次实验

吸取了第一次的教训,这次我打算用python+tensorflow完成实验。

实验环境
  • python3.6
  • tensorflow2.5
神经网络物理结构

同样是三层结构,只是隐藏层的神经元数量变为了10个。
在这里插入图片描述

准备数据

深度学习最为依赖数据,因此数据的准备是开始深度学习的第一步,本文对此准备了10组数据,可根据需要自行添加更多数据。

def train_data():
    x = [[2, 6], [3, 8], [3, 10], [4, 10], [4, 12], [4, 14], [5, 12], [5, 14], [5, 16], [5, 18]]
    x = np.array(x)

    y = [[1, 1], [2, 1], [1, 2], [3, 1], [2, 2], [1, 3], [4, 1], [3, 2], [2, 3], [1, 4]]
    y = np.array(y)
    return (x, y)
x_train = train_data()[0]
y_train = train_data()[1]
搭建神经网络
# 神经网络结构,输入层2个神经元,隐藏层10个神经元,输出层2个神经元
model = keras.Sequential(
    [keras.layers.Flatten(input_shape=(2,)),
     keras.layers.Dense(10, activation='relu'),
     keras.layers
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值