高数选择题总结 #1 20190916

本文总结了高等数学中选择题的解题思路,特别强调了在极限问题中的一些关键结论。例如,当lim x->0时,(g(x)+h(x))=0,若f(x)=0,则f(x)g(x)=0,说明某些选项可能不正确。此外,还探讨了无穷大量与无界函数的关系,指出无穷大并不总是等于无界,举例说明了特殊情况下无界但非无穷大的函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
这种题我一开始看上去很懵逼,感觉要记住结论才能搞定。不知道各位有没有偏定义的做法。
首先要记住一个函数 在这里插入图片描述这个函数可以论证 当lim x->0 时(g(x)+h(x))=0 而lim x->0时
对于1⃣️的情况 当f(x)=0时 lim x->0 = 0 则f(x)g(x)=0 所以不正确 所以只有第四个正确 !!!
记住这个结论 在这里插入图片描述
当lim x->0 f(x) = A, lim g(x) 不存在 则 lim x->a (fx+gx)不存在 ,而且当A!= 0时,又有lim x->a fx
gx不存在!!!

无穷大量与无界函数之间的关系:
如果lim x-> x0 f(x)= 无穷 可以推出f(x)在x0的任意去心邻域无界,但是反之是不行的,因为有一种情况是,f(x)在x0的任意去心邻域无界,但是f(x)在lim x->x0时不是无穷大量。例如函数(1/x)sin(1/x)当x=1/(2npi+pi/2)时 ,当n->无穷,x=0 但是fx=正无穷 当y=1/(npi)
时,n->无穷,y->0 ,但是f(x)= 0 !

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值