这种题我一开始看上去很懵逼,感觉要记住结论才能搞定。不知道各位有没有偏定义的做法。
首先要记住一个函数 这个函数可以论证 当lim x->0 时(g(x)+h(x))=0 而lim x->0时
对于1⃣️的情况 当f(x)=0时 lim x->0 = 0 则f(x)g(x)=0 所以不正确 所以只有第四个正确 !!!
记住这个结论
当lim x->0 f(x) = A, lim g(x) 不存在 则 lim x->a (fx+gx)不存在 ,而且当A!= 0时,又有lim x->a fxgx不存在!!!
无穷大量与无界函数之间的关系:
如果lim x-> x0 f(x)= 无穷 可以推出f(x)在x0的任意去心邻域无界,但是反之是不行的,因为有一种情况是,f(x)在x0的任意去心邻域无界,但是f(x)在lim x->x0时不是无穷大量。例如函数(1/x)sin(1/x)当x=1/(2npi+pi/2)时 ,当n->无穷,x=0 但是fx=正无穷 当y=1/(npi)
时,n->无穷,y->0 ,但是f(x)= 0 !