[吃瓜教程]南瓜书第5章神经网络

1.M-P神经元

M-P神经元,全称为McCulloch-Pitts神经元,是一种数学模型,用于模拟生物神经元的功能。这个模型是由Warren McCulloch和Walter Pitts在1943年提出的。它是人工智能和计算神经科学领域中非常重要的早期模型。
M-P神经元接收n个输入(通常来自其他神经元),并给各个输入赋予权重计算加权和,然后和自身特有的阈值 θ \theta θ进行比较(作减法),最后经过激活函数(模拟“抑制”和“激活”)处理得到输出(通常是给下一个神经元)
y = f ( ∑ i = 1 n w i x i − θ ) = f ( w T x + b ) y=f(\sum_{i=1}^nw_ix_i-\theta)=f(w^Tx+b) y=f(i=1nwixiθ)=f(wTx+b)
单个M-P神经元:感知机(sgn作激活函数)、对数几率回归(sigmoid作激活函数)
多个M-P神经元:神经网路

2.感知机(分类模型)

2.1 sgn函数

sgn 函数,或称为符号函数(sign function):是一个数学函数,用于确定一个实数的符号。sgn 函数的定义如下:

  • 当x>0时,sgn(x)=1
  • 当x=0时,sgn(x)=0
  • 当x<0时,sgn(x)=-1
    图像如下:
    在这里插入图片描述

2.2 感知机

1)模型
其具体公式如下:
y = s g n ( w T w − θ ) = { 1 , w T x − θ > = 0 0 , w T x − θ < 0 y=sgn(w^Tw-\theta) =\begin{cases} 1& ,{w^Tx-\theta>= 0}\\ 0& ,{w^Tx-\theta<0} \end{cases} y=sgn(wTwθ)={10,wTxθ>=0,wTxθ<0
其中, x ∈ R N x\in \mathbb{R}^N xRN为样本的特征向量,是感知机模型的输入, w , θ w,\theta w,θ是感知机模型的参数, w ∈ R n w\in \mathbb{R}^n wRn为权重, θ \theta θ 为阈值

从几何的角度来说,给定一个线性可分的数据集T,感知机的学习目标是求得能对数据集T中的正负样本完全正确划分的超平面,其中 w T x − θ w^Tx-\theta wTxθ即为超平面方程。
n维空间的超平面 ( w T x + b = 0 , 其中 w , x ∈ R n ) (w^Tx+b=0,其中w,x \in \mathbb R^n) (wTx+b=0,其中w,xRn):

  • 超平面方程不唯一
  • 法向量w垂直于超平面
  • 法向量w和位移项b确定一个唯一超平面
  • 法向量w指向的那一半空间为正空间,另一半为负空间

缺点: 只能解决线性可分的问题
模型图如下所示,只包含一个输入层和一个输出层。
在这里插入图片描述

2)策略
感知机的学习策略是,随机初始化 w , b w,b w,b,将全体训练样本带入模型找出误分类样本,假设此时误分类样本的集合为 M ⊆ T M\subseteq T MT对任意一个误分类样本 ( x , y ) ∈ M (x,y)\in M (x,y)M来说,当 w T x − θ > = 0 w^Tx-\theta >=0 wTxθ>=0时,模型输出值为 y ^ = 1 \hat y=1 y^=1,样本真实标记为y=0;繁殖,当 w T x − θ < 0 w^Tx-\theta<0 wTxθ<0时,模型输出值为 y ^ \hat y y^=0,样本真实标记为y=1。综合两种情况可知,以下公式恒成立
( y ^ − y ) ( w T x − θ ) > = 0 (\hat y-y)(w^Tx-\theta)>=0 (y^y)(wTxθ)>=0
所以,给定数据集T,其损失函数可以定义为:
L ( w , θ ) = ∑ x ∈ M ( y ^ − y ) ( w T x − θ ) L(w,\theta)=\sum_{x\in M}(\hat y-y)(w^Tx-\theta) L(w,θ)=xM(y^y)(wTxθ)
此时损失函数是非负的。如果没有误分类点,损失函数值为0.而且,误分类点越少,误分类点离超平面越近,损失函数值就越小。
损失函数还可以进一步优化,将 θ \theta θ并入 w w w向量中成为第n+1维0,其中x的第n+1维恒为-1。那么损失函数进一步简化为:
L ( w ) = ∑ x ∈ M ( y ^ − y ) w T x L(w)=\sum_{x\in M}(\hat y-y)w^Tx L(w)=xM(y^y)wTx
3)算法
当误分类样本集合M固定时,可以球的损失函数 L ( w ) L(w) L(w)的梯度为
∇ w L ( w ) = ∑ x i ∈ M ( y ^ i − y i ) x i \nabla_wL(w)=\sum_{x_i\in M}(\hat y_i-y_i)x_i wL(w)=xiM(y^iyi)xi
学习算法具体采用的是随机梯度下降法,也即极小化过程中不是一次使M中的所有误分类点的梯度下降,而是一次随机选取一个误分类点使其梯度下降。所以权重 w w w的更新公式为:
w ← w + Δ w w \leftarrow w+\Delta w ww+Δw
Δ w = − η ( y ^ i − y i ) x i = η ( y i − y ^ i ) x i \Delta w=-\eta(\hat y_i-y_i)x_i=\eta(y_i-\hat y_i)x_i Δw=η(y^iyi)xi=η(yiy^i)xi
其中 η \eta η为学习率,最终解出来的w通常不唯一。
从几何角度方便理解一点,如下图所示,
在这里插入图片描述
可以看到红线和绿线都可以把正负样本分开,它们代表了两组 w w w,因此说明解不唯一。

3.神经网络

为了解决线性不可分的数据集(其他的当个神经元的模型也可以结局线性不可分的数据集,只是感知机不可以),提出了由多个神经元构成的神经网络,且用通用近似定理可以证明:只需一个包含足够多神经元的隐层,多层前馈网络(最经典的神经网络之一)就能以任意精度逼近任意复杂度的连续函数。
优点:
既能做回归,也能做分类,而且不需要复杂的特征工程。
需要考虑的问题:

  • 对于具体场景,神经网络该做多深,多宽?(没有理论支撑,都是实践经验)
  • 对于具体场景,神经网络的结构该如何设计才最合理(没有强理论指导)
  • 对于具体场景,神经网络的输出结果该如何解释?(模型的可解释性可以用来指导特征调整)

经典神经网络——多层前馈网络:
每层神经元与下一层神经元全互连,神经元之间不存在同层连接,也不存在跨层连接。
在这里插入图片描述
将神经网络(NN)看作一个特征加工函数
x ∈ R d → N N ( x ) → y = x ∗ ∈ R l x\in R^d \rightarrow NN(x) \rightarrow y=x^* \in R^l xRdNN(x)y=xRl
回归:后面接一个 R l → R R^l \rightarrow R RlR的 神经元
y = w T x ∗ + b y=w^Tx^*+b y=wTx+b
分类:后面接一个 R l → [ 0 , 1 ] R^l \rightarrow [0,1] Rl[0,1]的神经元,例如激活函数为sigmoid函数的神经元
y = 1 1 + e − ( w T x ∗ + b ) y=\frac{1}{1+e^{-(w^Tx^*+b)}} y=1+e(wTx+b)1
神经网络可以自动提取特征不用人为的手工设计特征。
神经网络训练方法——BP算法:
在20世纪80年代之前,尽管神经网络已经存在一段时间,但其实际应用受到了限制,主要原因在于无法有效地训练多层神经网络
在这个背景下,1986年,David E. Rumelhart, Geoffrey E. Hinton, 和 Ronald J. Williams在他们的论文《Learning representations by back-propagating errors》中提出了反向传播算法。这一算法为多层前馈神经网络的训练提供了一个有效的方法,使得神经网络可以在更多复杂问题上展现出强大的表现力。
BP算法是一种基于随机梯度下降的参数更新算法。反向传播算法在处理多层神经网络时,通过链式法则有效地计算梯度,而随机梯度下降则用于基于这些梯度更新权重。反向传播算法与随机梯度下降相辅相成,共同实现了多层神经网络的高效训练。
下面是以输入层第i个神经元与隐层第h个神经元之间的连接全 v i h v_{ih} vih为例推导一下:
损失函数
E k = 1 2 ∑ j = 1 l ( y ^ j k − y j k ) 2 E_k=\frac12\sum^l_{j=1}(\hat y^k_j-y^k_j)^2 Ek=21j=1l(y^jkyjk)2
Δ v i h = − η ∂ E k ∂ v i h \Delta v_{ih}=-\eta \frac{\partial{E_k}}{\partial{v_{ih}}} Δvih=ηvihEk
用链式求导得到
∂ E k ∂ v i h = ∑ j = 1 l ∂ E k ∂ y ^ j k ∗ ∂ y ^ j k ∂ β j ∗ ∂ β j ∂ b h ∗ ∂ b h ∂ α h ∗ ∂ α h ∂ v i h \frac{\partial{E_k}}{\partial{v_{ih}}}=\sum^l_{j=1}\frac{\partial{E_k}}{\partial{\hat y^k_j}}*\frac{\partial{\hat y^k_j}}{\partial{\beta_j }}*\frac{\partial{\beta_j }}{\partial{b_h}}*\frac{\partial{b_h}}{\partial{\alpha_h}}*\frac{\partial{\alpha_h}}{\partial{v_{ih}}} vihEk=j=1ly^jkEkβjy^jkbhβjαhbhvihαh

  • 18
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
南瓜(《统计学习方法》)是一本机器学习领域的经典教材,被称为机器学习领域的“圣经”。这本由李航教授撰写,包含了机器学习的基本概念、方法和算法等内容。 南瓜主要分为三个部分。第一部分是关于机器学习基础的内容,包括统计学习方法的基本概念、模型评估和选择等内容。第二部分介绍了常用的机器学习算法,如线性模型、决策树、支持向量机等,以及集成学习和聚类方法。第三部分则深入探讨了机器学习中的优化方法、神经网络深度学习等内容。 该以清晰的逻辑结构和严谨的数学推导,为读者提供了一个系统了解机器学习的方法。同时,该注重实践应用,给出了大量的示例和案例分析,帮助读者理解算法的实际应用场景。 南瓜因其全面而详细的内容,以及对数学推导和算法实现的深入讲解而受到广大学习者的喜爱。对于机器学习初学者来说,这本可以作为入门教材,帮助他们建立起对机器学习基础概念和方法的全面认识。对于已经具备一定机器学习基础的学习者来说,该是一个不可或缺的参考资料,可以帮助他们进一步深入理解和应用机器学习算法。 南瓜的电子版PDF在互联网上广为流传,读者可以通过下载或在线阅读的方式获取。通过阅读南瓜,我们可以更好地掌握机器学习的基本原理和实践技巧,为进一步深入研究和应用机器学习打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不是吧这都有重名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值