前言:
CVAE(条件自编码) 主要有两个部分组成 编码器 (Encoder)和解码器(Decoder)
首先编码器中输入的是真实图像,经过一系类卷积操作提取真实图像特征的均值和方差,并将其转化成一个特定得高斯分布,编码器是选择一个服从该高斯分布的一个随机向量。
然后解码器输入的是编码器中输出的随机向量:经过一系列的反置卷积操作重构真实图像
优点是:生成图像稳定,不易出现模式坍塌的稳定
缺点是:图像容易模糊,而且图像的多样性不是很高
Condition GAN (条件GAN) 主要有两个部分组成, G生成模型和D识别模型
生成器G中输入的是一个噪音和图像的标签,经过一系列的反置卷积操作,输出一张生成图像
识别器D中输入是真实图像和以及对应的标签, 和生成图像以及对应的标签, 输出的是对图像类别的判断
优点是: 生成图像多样性比较好,生成的质量比较清楚
缺点是:生成过程过于随机,可能出在现实生活中没有意义的图像
VAE-GAN主要有三个部分组成,编码器(Encoder), 生成器G, 和 识别器D
编码器(Encoder)提取:首先使用编码器提取真实图像的特征,直接作为生成模型的输入
生成器G:输入的是编码器中输入图像特征,输出的是一张生成图像。
识别器D:输入的是一张真实图像,对应的标签和生成图像以及对应的标签, 输出的是图像判别图像的真假信息
优点是:相对于CVAE生成图像多样性较高,相对于Condition GAN生成图像较为稳定 ,
缺点是:图像一般很难有较大的变化
实验结果如下, 三个代码见后续章节。



