Stamps and Envelope Size UVA - 242 

完全背包问题

附一篇完全背包问题很好的讲解https://www.cnblogs.com/Kalix/p/7622102.html

01背包也值得一看http://www.cnblogs.com/Kalix/p/7617856.html

代码也好理解

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<assert.h>
#include<vector>
#include<list>
#include<map>
#include<set>
#include<sstream>
#include<stack>
#include<queue>
#include<string>
#include<bitset>
#include<algorithm>
#pragma warning(disable:4996)
#define me(s)  memset(s,0,sizeof(s))
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define FOR(i,n) for(int i=(n);i>=0;i--)
using namespace std;
typedef pair <int, int> pii;
typedef long long ll;
typedef unsigned long long llu;
const int inf = 0x3f3f3f3f;
const int dr[] = { 0, -1, 0, 1, -1, -1, 1, 1 };
const int dc[] = { -1, 0, 1, 0, -1, 1, -1, 1 };
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const double eps = 1e-15;
const int maxn = 25;
int s, n, m;
int a[maxn];
int dp[1005];
int ans[maxn];
int main()
{
	while (cin >> s && s)
	{
		int best = 0, Max =  inf, num = inf;
		cin >> n;
		for (int i = 0; i < n; i++)
		{
			cin >> a[0];
			for (int j = 1; j <= a[0]; j++)
				cin >> a[j];
			memset(dp, 100, sizeof(dp));
			dp[0] = 0;
			int now = 0;
			for (int j = 1; j <= s * a[a[0]] + 1; j++){
				for (int k = 1; k <= a[0] && j >= a[k]; k++)
					dp[j] = min(dp[j], dp[j - a[k]] + 1);
				if (dp[j]>s)
				{
					now = j - 1;
					break;
				}
			}
			if (now > best)   {
				best = now; num = a[0];
				Max = a[a[0]];
				memcpy(ans, a, sizeof(a));
			}
			else if (now == best)   {
				if (a[0] < num)   {
					num = a[0];
					Max = a[a[0]];
					memcpy(ans, a, sizeof(a));
				}
				else if (a[a[0]] < Max)  {
					Max = a[a[0]];
					memcpy(ans, a, sizeof(a));
				}
			}
		}
		printf("max coverage =%4d :", best);
		for (int i = 1; i <= num; i++)printf("%3d", ans[i]);
		puts("");
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值