贝尔数,两类斯特灵数的计算公式


第一类斯特灵数:含正负值,其绝对值是包含n个元素的集合分作k个环排列的方法数目。


递推公式   s(n,0)=0,s(1,1)=1,s(n,k)=s(n-1,k-1)+(n-1)*s(n-1,k)

第二类斯特灵数:把包含n个元素的集合划分为正好k个非空子集的方法的数目。

递推公式   s(n,k)=s(n-1,k-1)+k*s(n-1,k)

贝尔数 Bn表示包含n个元素的集合的划分方法的数目

递推公式 B0=1  Bn+1=(n,0)*B0+(n,1)*B1+(n,2)*B2+...+(n,n)Bn

可见贝尔数是第二类斯特灵数的和,即 Bn=s(n,1)+s(n,2)+...s(n,n)

贝尔数和斯特灵数可以通过构建贝尔三角形a得到
建构方法如下:

1 第一行首项是1(a[1][1]=1)
2 对于n>1,第n行第一项等同第n-1行最后一项(a[n][1]=a[n-1][n-1])

3 对于m,n>1,第n行第m项等于它左边和左上方两个数之和(a[n][m]=a[n][m-1]+a[n-1][m-1]

结果如下
每行首项是Bell数


Bell数的大数计算模板

BigNum类大数模板在我的这篇博客中可以找到   点击打开链接

BigNum a[900 + 5][900 + 5];   //a[n]=Bn-1 Bell数下标从0开始
void marktable_Bell() 
{
	BigNum t(1);
	a[1][1] = t;
	for (int i = 2; i <= N; i++)
		for (int j = 1; j <= i; j++)
			if (j == 1) a[i][j] = a[i - 1][i - 1];
			else a[i][j] = a[i][j - 1] + a[i - 1][j - 1];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值