VBA-Excel重心法求解最优地址

本文介绍使用VBA通过重心法求解最优地址的方法。包括界面设计、数据输入及计算过程。提供从初始解到迭代求精的具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刚刚学习VBA,于是做了一个小运算,用重心法求解最优地址

1.做出的模板界面如下图所示,通过点击按钮,就可以计算得到我们想要的结果

Option Explicit

Sub 

2.接下来,我们来看一个具体实例,在空白的数据区域填上我们的数据。然后点击相应的按钮,我们就可以得到我们所需的数据



3,不想要迭代的过程,可以直接按“求解”按钮,直接得出结果


4.具体代码如下:

Option Explicit

Sub 计算目的坐标()
Dim h0, hn, i

初始解
h0 = 运费(cells(7, 2), cells(8, 2), 8, 2)
hn = 下一个点(cells(7, 2), cells(8, 2))
While hn <= h0
迭代
i = h0
h0 = hn
hn = 下一个点(cells(7, 2), cells(8, 2))
Wend

End Sub
Sub 运乘量()
宏运费
End Sub
Sub later()
Dim h1
迭代
h1 = 下一个点(cells(7, 2), cells(8, 2))

End Sub
Sub 初解()
Dim i, j
i = 2
While cells(1, i) <> ""
j = i - 1
cells(8 + i, 1).Value = "d" & j
cells(8 + i, 3).Value = "dn" & j
i = i + 1
Wend
cells(8 + 1 + i, 1) = "h"
cells(8 + 1 + i, 3) = "hn"
初始解
End Sub

Function 宏运费()
Dim i
i = 2

While cells(1, i) <> ""
  cells(6, i) = cells(4, i) * cells(5, i)
  
    i = i + 1
    Wend
    
End Function
Function 初始解()
'根据公式算出初始解
Dim i, sum, chu, x0, y0
i = 2
sum = 0
chu = 0
While cells(1, i) <> ""

sum = sum + cells(2, i) * cells(6, i)
chu = chu + cells(6, i)
i = i + 1
Wend
x0 = sum / chu
i = 2
sum = 0
chu = 0
While cells(1, i) <> ""

sum = sum + cells(3, i) * cells(6, i)
chu = chu + cells(6, i)
i = i + 1
Wend
'将结果显示在对应的单元格上
y0 = sum / chu
cells(7, 2) = x0
cells(8, 2) = y0
End Function
'计算此时的运费
Function 运费(x0, y0, a, b)
Dim i, h, j
i = 2
While cells(1, i) <> ""
cells(a + i, b) = Sqr((cells(2, i) - x0) * (cells(2, i) - x0) + (cells(3, i) - y0) * (cells(3, i) - y0))
i = i + 1
Wend
j = 2

While cells(1, j) <> ""

h = cells(6, j) * cells(a + j, b) + h
j = j + 1
Wend
cells(a + i + 1, b) = h
运费 = h

End Function
'用公式计算下一个坐标点
Function 下一个点(x0, y0)

Dim x, y, h0, h, sum, chu, i, m

i = 2
While cells(1, i) <> ""
cells(8 + i, 2) = Sqr((cells(2, i) - x0) * (cells(2, i) - x0) + (cells(3, i) - y0) * (cells(3, i) - y0))
i = i + 1
Wend
i = 2
sum = 0
chu = 0
While cells(1, i) <> ""

sum = sum + cells(2, i) * cells(6, i) / cells(8 + i, 2)
chu = chu + cells(6, i) / cells(8 + i, 2)
i = i + 1
Wend
x = sum / chu
i = 2
sum = 0
chu = 0
While cells(1, i) <> ""

sum = sum + cells(3, i) * cells(6, i) / cells(8 + i, 2)
chu = chu + cells(6, i) / cells(8 + i, 2)
i = i + 1
Wend
y = sum / chu
h = 运费(x, y, 8, 4)

i = 2
While cells(1, i) <> ""
cells(8 + i, 4) = Sqr((cells(2, i + 1) - x) * (cells(2, i + 1) - x) + (cells(3, i + 1) - y) * (cells(3, i + 1) - y))
i = i + 1
Wend
'将对应的数据显示在对应的单元格上
cells(7, 4) = x
cells(8, 4) = y
cells(8 + i + 1, 4) = h



End Function
'进行迭代计算
Function 迭代()
Dim i

cells(7, 2) = cells(7, 4)
cells(8, 2) = cells(8, 4)
i = 2
While cells(1, i) <> ""
cells(8 + i, 2) = cells(8 + i, 4)

i = i + 1
Wend
cells(8 + i + 1, 2) = cells(8 + i + 1, 4)

End Function



内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值