opencv + svm实现车牌识别(附完整代码)

本文介绍了一个利用OpenCV和SVM实现车牌识别的实验,包括车牌定位、字符分割和字符识别。首先通过图像处理技术如灰度转换、二值化、边缘检测等定位车牌,然后通过字符轮廓分析进行字符分割,最后使用SVM模型进行字符识别。实验结果显示,程序能够识别车牌上的中文省份简称和字母数字,但存在颜色识别限制和识别准确性问题。
摘要由CSDN通过智能技术生成

一、实验目的

通过一张含有车牌的车的照片,分割出车牌并识别出图片上车的车牌号

二、具体内容

  1. 车牌定位
  2. 车牌字符分割
  3. 车牌字符识别

三、实验过程

1.车牌定位
具体过程:
1.灰度转换:将彩色图片转换为灰度图像,常见的R=G=B=像素平均值。
2.高斯平滑和中值滤波:去除噪声。
3.二值化处理:图像转换为黑白两色,通常像素大于127设置为255,小于设置为0。
4.canny边缘检测
5.膨胀和细化:放大图像轮廓,转换为一个个区域,这些区域内包含车牌。
6.通过算法选择合适的车牌位置,通常将较小的区域过滤掉或寻找蓝色底的区域。
7.标注车牌位置并提取车牌

读入原始图像
在这里插入图片描述

BGR转换为灰度图像
在这里插入图片描述

图像二值化处理

在这里插入图片描述

canny边缘检测
在这里插入图片描述

进行闭运算与开运算,消除小的区域,保留大块的区域,从而定位车牌位置

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

找出轮廓的左上点和右下点,由此计算它的面积和长度比。找出面积最大的三个区域。
在这三个最大的区域中使用颜色识别判断找出最

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值