推荐系统开源代码

This is the code for the WWW-2019 Paper: Dressing as a Whole: Outfit Compatibility Learning Based on Node-wise Graph Neural Networks. We have implemented our methods in Tensorflow.

https://github.com/CRIPAC-DIG/NGNN

Knowledge Graph Convolutional Networks for Recommender Systems
Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, Minyi Guo.
In Proceedings of The 2019 Web Conference (WWW 2019)

https://github.com/hwwang55/KGCN

DKN: Deep Knowledge-Aware Network for News Recommendation
Hongwei Wang, Fuzheng Zhang, Xing Xie, Minyi Guo
The Web Conference 2018 (WWW 2018)

https://github.com/hwwang55/DKN

Representation Learning for Attributed Multiplex Heterogeneous Network.

Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia YangJingren ZhouJie Tang

https://github.com/THUDM/GATNE

Code for our ACM RecSys 2017 paper "Personalizing Session-based Recommendation with Hierarchical Recurrent Neural Networks". See the paper: https://arxiv.org/abs/1706.04148

https://github.com/mquad/hgru4rec

Zemin Liu, Vincent W. Zheng, Zhou Zhao, Hongxia Yang, Kevin Chen-Chuan Chang, Minghui Wu, and Jing Ying. 2018. Subgraph-augmented Path Embedding for Semantic User Search on Heterogeneous Social Network. In Proceedings of The 2018 Web Conference (WWW 2018). ACM. New York, NY. USA, 10 pages.

https://github.com/vwz/SPE

microsoft/recommenders

https://github.com/Microsoft/Recommenders

shenweichen/GraphNeuralNetwork

https://github.com/shenweichen/GraphNeuralNetwork

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值