2024年最新密码学——欧几里得扩展算法(求模逆)_欧几里得算法求模逆元(1),查缺补漏

本人从事网路安全工作12年,曾在2个大厂工作过,安全服务、售后服务、售前、攻防比赛、安全讲师、销售经理等职位都做过,对这个行业了解比较全面。

最近遍览了各种网络安全类的文章,内容参差不齐,其中不伐有大佬倾力教学,也有各种不良机构浑水摸鱼,在收到几条私信,发现大家对一套完整的系统的网络安全从学习路线到学习资料,甚至是工具有着不小的需求。

最后,我将这部分内容融会贯通成了一套282G的网络安全资料包,所有类目条理清晰,知识点层层递进,需要的小伙伴可以点击下方小卡片领取哦!下面就开始进入正题,如何从一个萌新一步一步进入网络安全行业。

学习路线图

其中最为瞩目也是最为基础的就是网络安全学习路线图,这里我给大家分享一份打磨了3个月,已经更新到4.0版本的网络安全学习路线图。

相比起繁琐的文字,还是生动的视频教程更加适合零基础的同学们学习,这里也是整理了一份与上述学习路线一一对应的网络安全视频教程。

网络安全工具箱

当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,你肯定需要学习各种工具的使用以及大量的实战项目,这里也分享一份我自己整理的网络安全入门工具以及使用教程和实战。

项目实战

最后就是项目实战,这里带来的是SRC资料&HW资料,毕竟实战是检验真理的唯一标准嘛~

面试题

归根结底,我们的最终目的都是为了就业,所以这份结合了多位朋友的亲身经验打磨的面试题合集你绝对不能错过!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

原来19^(-1) (mod26)不等于 19^(-1)呀!

那怎么求呢?

上欧几里得扩展定理!

②欧几里得扩展定理

根据贝祖定理得出

gcd(k,26) = 1可以推导出 x*k + y*26 = 1

那么咱们就对整个式子进行mod 26

c9579a8d9fc949208ebb08c2a6f570eb.png

可以得到结论 x*k = 1(mod26)

式子变形一下

k^(-1) = x(mod26)

这里的k换成19 是不是一下就熟悉了?

那我们只需要求x就能求出k^(-1)了

想求x 就只能从x*19 + y*26 = 1(mod26) 开始找起了

这时候就得用上欧几里得了(辗转相除)

3ff3a06045f64607b57643e21cfa210d.png

这是推导gcd(19,26) = 1的式子

咱们只需要稍微变形一下

7496b4de4872441a829ebd7ee0ec1980.png

从下往上算!

把所有出现在乘号之前的 2、5、7全换掉!(乘号后面的别换…)

只剩下26 19 1 !

(别问为什么 因为要在式子:x*19 + y*26 = 1(mod26)里面找x  这式子里只有19 26 1)

下面是我的计算:

d0f122bd51d741a0b30f30e4171dbf4e.png

8bcea5da280242dab09566887f379c99.png

最后算出来了19*11-26*8 = 1

就相当于19*11 = 1(mod26)

那k^(-1)就等于11

也就是 密文’M’ 序号12*11 mod 26 = 132 mod 26

132 mod 26 = 5*26 + 2 (mod 26) = 2

解密出密文’M’对应的明文序号就是2 也就是C!

成功!

三、总结

1、总结

刚刚咱们已知k = 19 求 k^(-1)的情况叫做求k的逆元

求逆元的方法就叫做欧几里得扩展算法

我这里还有几个k和它对应的k^(-1) 你们可以计算一下

5^(-1) = 21

7^(-1) = 15

17^(-1) = 23

2、代码

这是求逆元的代码(固定设置的模是26)

#include <stdio.h>
#include <stdlib.h>

// 扩展欧几里得算法,返回最大公约数,并通过指针传递 x 和 y
int extendedGCD(int a, int b, int *x, int *y) {
    if (b == 0) {
        *x = 1;
        *y = 0;
        return a;
    }

    int x1, y1;
    int gcd = extendedGCD(b, a % b, &x1, &y1);

    *x = y1;
    *y = x1 - (a / b) * y1;

    return gcd;
}

// 计算乘法密钥的逆元
int multiplicativeInverse(int key, int m) {
    int x, y;
    int gcd = extendedGCD(key, m, &x, &y);

    // 如果 gcd 不是 1,表示 key 和 m 不互质,逆元不存在


**先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7**

**深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。**
![img](https://img-blog.csdnimg.cn/img_convert/610385dfc0b96962bc0f94be4ef8c1ce.png)
![img](https://img-blog.csdnimg.cn/img_convert/863092a35f99c5320c2cfec3341f5d51.png)
![img](https://img-blog.csdnimg.cn/img_convert/0923399317d29b2f2111adc2d70a915e.png)
![img](https://img-blog.csdnimg.cn/img_convert/38a51b0bf1da548e559d3205bee33505.png)
![img](https://img-blog.csdnimg.cn/img_convert/a0f94d4d6135f95802769e8e1de2ac10.png)
![img](https://img-blog.csdnimg.cn/img_convert/277c90fad9c9c5311f5052ffae3b0e5d.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以点击这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

*既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以点击这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

  • 22
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
扩展欧几里得算法解一元一次不定方程 ax + by = gcd(a,b) 的一种方法,其中 a 和 b 是整数,gcd(a,b) 是它们的最大公约数,x 和 y 是整数解。逆元是指在模运算下,一个数的乘法逆元是指与它相乘后模运算得到 1 的数。在数论中,常常需要一个数在模意义下的逆元,即一个数 k 满足 (k * x) % m = 1,其中 m 是模数。 下面是扩展欧几里得算法逆元的 C 语言实现: ```c #include <stdio.h> // 扩展欧几里得算法 int exgcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int gcd = exgcd(b, a % b, y, x); *y -= a / b * (*x); return gcd; } // 逆元 int modinv(int a, int m) { int x, y; int gcd = exgcd(a, m, &x, &y); if (gcd != 1) { return -1; // a 和 m 不互质,不存在逆元 } else { return (x % m + m) % m; // 转化为正整数 } } int main() { int a = 3, m = 11; int inv = modinv(a, m); if (inv == -1) { printf("%d 在模 %d 意义下不存在逆元\n", a, m); } else { printf("%d 在模 %d 意义下的逆元是 %d\n", a, m, inv); } return 0; } ``` 这个程序中,exgcd 函数通过递归实现扩展欧几里得算法,返回 a 和 b 的最大公约数,并且出 x 和 y 的值。在 modinv 函数中,我们调用 exgcd 函数出 a 和 m 的最大公约数,并且判断 a 和 m 是否互质,如果不互质则不存在逆元。否则,根据扩展欧几里得算法的结果,出 x 的值作为 a 在模 m 意义下的逆元。注意,由于 x 可能是负数,所以要将其转化为正整数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值