ζ(2)的夹逼代数证明

黎曼ζ函数主要和“最纯”的数学领域数论相关,它也出现在应用统计学和齐夫-曼德尔布罗特定律(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。

有关于ζ(x)函数证明,用初等证明方式是困难的,本文提供一种较为初等的代数证明方式

_____________________________________________________________________________________________________

证明:

$$ \lim_{n\rightarrow \infty}\sum_{k=1}^{n}\frac{1}{k^2}=\frac{\pi^2}{6} $$
解:

0<x<\pi/2有,不等式sinx<x<tanx恒成立,

即得cot^2x<\frac{1}{x^2}<cot^2x+1  ;

x=\frac{k\pi}{2m+1}\ \ \ (k=1,2...m)

即,

\sum_{k=1}^{m} cot^2(\frac{k\pi}{2m+1})<\frac{(2m+1)^2}{\pi^2}.\sum_{k=1}^{m}\frac{1}{k^2}<\sum_{k=1}^{m} cot^2(\frac{k\pi}{2m+1})+m

由欧拉公式e^{ix}=cosx+isinx得,

cosnx+isinnx=(cosx+isinx)^n

\Rightarrow sinnx=C_{n}^{1}cos^{n-1}xsinx-C_{n}^{3}cos^{n-3}sin^3x+......\\ =\sum_{i=0}^{[\frac{n-1}{2}]}(-1)^i C_{n}^{2i+1}cos^{n-2i-1}xsin^{2i+1}x\\=sin^nx\sum_{i=0}^{[\frac{n-1}{2}]}(-1)^i C_{n}^{2i+1}cot^{n-2i-1}x

与本题结合即有,

sin(2m+1)\theta=sin^{2m+1}\theta P_m(cot^2\theta)

P_m(x)=\sum_{i=0}^{m}(-1)^iC_{2m+1}^{2i+1}x^{m-i}

\Rightarrow P_m(cot^2\theta)=\frac{sin(2m+1)\theta}{sin^{2m+1}\theta}

P_m(cot^2\theta)=0,得\theta_k=\frac{k\pi}{2m+1}\ \ \ \ k=1,2...m

多项式零点和,可以通过韦达定理推广得到。

对任意一元二次方程ax^2+bx+c=0,

x_1+x_2=-\frac{b}{a},x_1x_2=\frac{c}{a} 

a(x-x_1)(x-x_2)=ax^2+bx+c

推广到一元n次方程有

a_n\prod_{i=1}^{n}(x-x_i)=\sum_{j=0}^{n}a_jx^j=0

a_n\prod_{i=1}^{n}(x-x_i)=a_n(x^n-\sum_{i=1}^{n}x_ix^{n-1}+.....+(-1)^n\prod_{i=1}^{n}x_i)=0

既有结论:

\sum_{i=1}^{n}x_i=-\frac{a_n-1}{a_n},\prod_{i=1}^{n}x_i=(-1)^n\frac{a_0}{a_n}

那么,

\sum_{k=1}^{m} cot^2(\frac{k\pi}{2m+1})=-\frac{-C_{2m+1}^{3}}{C_{2m+1}^{1}}=\frac{m(2m-1)}{3}

\Rightarrow\frac{m(2m-1)\pi^2}{3(2m+1)^2}<\sum_{k=1}^{m}\frac{1}{k^2}<\frac{2m(m+1)\pi^2}{3(2m+1)^2}

m\rightarrow\infty,即可得\zeta(2)=\frac{\pi^2}{6} 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值