
Transformer
文章平均质量分 74
曦紫沐
抟扶摇而上者九万里
展开
-
Transformer解码器终极指南:从Masked Attention到Cross-Attention的PyTorch逐行实现
至此你已经掌握了Transformer解码器的核心原理与实现。无论是机器翻译、文本生成,还是对话系统,解码器都是生成任务的核心引擎。——赶紧修改代码参数,观察模型变化吧!如果遇到问题,欢迎在评论区留言讨论,我们一起解决!希望这篇解析能助你彻底理解Transformer解码器,期待看到你的实战成果!Transformer 解码器的核心任务是基于编码器的语义表示。,实现自回归生成并融合源序列信息。(如翻译结果、文本续写)。每层解码器包含以下模块(附。原创 2025-02-11 03:12:20 · 494 阅读 · 0 评论 -
手撕Transformer编码器:从Self-Attention到Positional Encoding的PyTorch逐行实现
它通过多层自注意力(Self-Attention)和前馈网络(FFN),逐步建模全局依赖关系,解决传统RNN/CNN的长距离依赖缺陷。Transformer 编码器的核心任务是将输入序列(如文本、语音)转换为。每层编码器包含以下模块(附。原创 2025-02-11 03:07:02 · 607 阅读 · 0 评论 -
《Transformer架构完全解析:从零开始读懂深度学习的革命性模型》
优点并行计算效率高。长距离依赖建模能力强。可扩展性好(适合大规模预训练)。缺点计算复杂度随序列长度平方增长(On2O(n^2)On2需要大量训练数据。原创 2025-02-11 02:57:11 · 1471 阅读 · 0 评论 -
Transformer 的缩放因子为什么需要开平方根
在 Transformer 模型中,缩放因子(scaling factor)特别设计用于调整注意力分数(attention scores),它通常是键向量维度的平方根。原创 2024-10-15 17:39:33 · 873 阅读 · 0 评论