在AI应用开发中,如何快速将火山引擎的大模型能力集成到Dify平台?不少开发者面对复杂的参数配置和接口调试望而却步。本文通过实战案例,拆解从密钥申请到模型调用的全流程,助你10分钟打通企业级AI应用的最后一公里。
1.登录账号
2.获取API key
2.1 选择模型
2.2 点击推理
2.3 获取 Model ID
2.4 创建 API key
2.5 自定义 API key 名称
2.6 点击开通
3.本地测试大模型
curl https://ark.cn-beijing.volces.com/api/v3/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer 32e4516c-efa3-4aba-954d-7459218d91dc" \
-d '{
"model": "doubao-pro-32k-241215",
"messages": [
{"role": "system","content": "你是人工智能助手."},
{"role": "user","content": "常见的十字花科植物有哪些?"}
]
}'
4.本地调用大模型接口
pip install --upgrade "openai>=1.0"
import os
from openai import OpenAI
# 请确保您已将 API Key 存储在环境变量 ARK_API_KEY 中
# 初始化Openai客户端,从环境变量中读取您的API Key
client = OpenAI(
# 此为默认路径,您可根据业务所在地域进行配置
base_url="https://ark.cn-beijing.volces.com/api/v3",
# 从环境变量中获取您的 API Key
api_key=os.environ.get("ARK_API_KEY"),
)
# Non-streaming:
print("----- standard request -----")
completion = client.chat.completions.create(
# 指定您创建的方舟推理接入点 ID,此处已帮您修改为您的推理接入点 ID
model="doubao-pro-32k-241215",
messages=[
{"role": "system", "content": "你是人工智能助手"},
{"role": "user", "content": "常见的十字花科植物有哪些?"},
],
)
print(completion.choices[0].message.content)
# Streaming:
print("----- streaming request -----")
stream = client.chat.completions.create(
# 指定您创建的方舟推理接入点 ID,此处已帮您修改为您的推理接入点 ID
model="doubao-pro-32k-241215",
messages=[
{"role": "system", "content": "你是人工智能助手"},
{"role": "user", "content": "常见的十字花科植物有哪些?"},
],
# 响应内容是否流式返回
stream=True,
)
for chunk in stream:
if not chunk.choices:
continue
print(chunk.choices[0].delta.content, end="")
print()
5.Dify 配置火山引擎大模型
5.1 点击设置
5.2 点击模型供应商&选择火山引擎
5.3 大模型API key配置
5.4 查看配置的大模型
6.模型测试
6.1 创建对话机器人
6.2 自定义对话机器人的名称
6.3 设置对话机器人的角色
6.4 选择火山引擎的大模型
6.5 点击发布
6.6 大模型对话测试
通过本文的配置方案,你已拥有将火山引擎大模型与Dify低代码平台结合的能力。如果在实践过程中遇到参数调优或性能瓶颈问题,欢迎在评论区分享你的场景需求,后续将针对高频问题推出性能优化专题。