手把手教你配置Dify+火山引擎大模型:3步实现AI应用落地

在AI应用开发中,如何快速将火山引擎的大模型能力集成到Dify平台?不少开发者面对复杂的参数配置和接口调试望而却步。本文通过实战案例,拆解从密钥申请到模型调用的全流程,助你10分钟打通企业级AI应用的最后一公里。

1.登录账号

火山引擎
在这里插入图片描述

2.获取API key

2.1 选择模型

在这里插入图片描述

2.2 点击推理

在这里插入图片描述

2.3 获取 Model ID

在这里插入图片描述

2.4 创建 API key

在这里插入图片描述

2.5 自定义 API key 名称

在这里插入图片描述

2.6 点击开通

在这里插入图片描述

3.本地测试大模型

curl https://ark.cn-beijing.volces.com/api/v3/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer 32e4516c-efa3-4aba-954d-7459218d91dc" \
  -d '{
    "model": "doubao-pro-32k-241215",
    "messages": [
      {"role": "system","content": "你是人工智能助手."},
      {"role": "user","content": "常见的十字花科植物有哪些?"}
    ]
  }'

4.本地调用大模型接口

pip install --upgrade "openai>=1.0"
import os
from openai import OpenAI

# 请确保您已将 API Key 存储在环境变量 ARK_API_KEY 中
# 初始化Openai客户端,从环境变量中读取您的API Key
client = OpenAI(
    # 此为默认路径,您可根据业务所在地域进行配置
    base_url="https://ark.cn-beijing.volces.com/api/v3",
    # 从环境变量中获取您的 API Key
    api_key=os.environ.get("ARK_API_KEY"),
)

# Non-streaming:
print("----- standard request -----")
completion = client.chat.completions.create(
    # 指定您创建的方舟推理接入点 ID,此处已帮您修改为您的推理接入点 ID
    model="doubao-pro-32k-241215",
    messages=[
        {"role": "system", "content": "你是人工智能助手"},
        {"role": "user", "content": "常见的十字花科植物有哪些?"},
    ],
)
print(completion.choices[0].message.content)

# Streaming:
print("----- streaming request -----")
stream = client.chat.completions.create(
    # 指定您创建的方舟推理接入点 ID,此处已帮您修改为您的推理接入点 ID
    model="doubao-pro-32k-241215",
    messages=[
        {"role": "system", "content": "你是人工智能助手"},
        {"role": "user", "content": "常见的十字花科植物有哪些?"},
    ],
    # 响应内容是否流式返回
    stream=True,
)
for chunk in stream:
    if not chunk.choices:
        continue
    print(chunk.choices[0].delta.content, end="")
print()

5.Dify 配置火山引擎大模型

5.1 点击设置

在这里插入图片描述

5.2 点击模型供应商&选择火山引擎

在这里插入图片描述

5.3 大模型API key配置

在这里插入图片描述

5.4 查看配置的大模型

在这里插入图片描述

6.模型测试

6.1 创建对话机器人

在这里插入图片描述

6.2 自定义对话机器人的名称

在这里插入图片描述

6.3 设置对话机器人的角色

在这里插入图片描述

6.4 选择火山引擎的大模型

在这里插入图片描述

6.5 点击发布

在这里插入图片描述

6.6 大模型对话测试

在这里插入图片描述

通过本文的配置方案,你已拥有将火山引擎大模型与Dify低代码平台结合的能力。如果在实践过程中遇到参数调优或性能瓶颈问题,欢迎在评论区分享你的场景需求,后续将针对高频问题推出性能优化专题。

<think>好的,我现在需要解决用户关于火山引擎Dify的Endpoint ID配置方法和用途的问题。首先,我得回忆一下用户提供的引用内容。引用[1]提到需要申请火山引擎的key并创建endpoint,引用[2]则涉及微信小程序调用火山方舟的DeepSeek大模型,需要注册火山引擎账号,创建API Key和接入点ID。引用[3]提到了在TOS Bucket上传配置,可能涉及RAG服务的设置。 用户的问题集中在Dify相关的Endpoint ID配置上。我需要先明确Dify火山引擎中的角色。Dify可能是一个平台或工具,用于集成AI模型,比如DeepSeek。Endpoint ID通常是用来指向特定模型服务的地址或标识符,确保请求能正确路由到对应的模型实例。 接下来,根据引用[2],创建API Key和model(接入点ID)是必须的骤。所以配置Endpoint ID可能是在火山引擎控制台中生成,然后在Dify的设置里填入这个ID,以便Dify能通过火山引擎的API访问模型服务。用途方面,Endpoint ID应该是用于认证和路由请求,确保Dify能正确调用火山引擎上的模型资源。 可能存在的骤包括:登录火山引擎控制台,进入AI模型服务部分,创建或获取已有的接入点ID,然后在Dify配置界面找到相关设置项,填入该ID和对应的API Key。需要确认是否需要其他配置,比如TOS Bucket的存储配置,如引用[3]提到的RAG服务可能需要额外存储配置,但用户的问题可能主要集中在Endpoint ID本身。 需要进一验证这些骤是否正确,是否有遗漏。例如,是否需要在火山引擎中先部署模型实例,再获取Endpoint ID?或者是否Dify有特定的配置文档指导如何连接火山引擎?可能还需要参考火山引擎的官方文档或Dify的集成指南,确保信息的准确性。 总结一下,配置方法可能包括:创建火山引擎API Key和接入点ID,然后在Dify配置这些信息。用途是让Dify能够通过火山引擎的接口调用所需的AI模型服务,如DeepSeek,实现问答、内容生成等功能。可能需要检查是否有网络权限设置,确保Dify可以访问火山引擎的端点。</think>火山引擎中与Dify相关的Endpoint ID配置主要用于连接AI模型服务(如DeepSeek大模型),具体方法如下: ### 一、Endpoint ID配置骤 1. **创建火山引擎API Key** - 登录火山引擎控制台,进入「访问控制」-「密钥管理」 - 新建密钥并保存`Access Key ID`和`Secret Access Key`[^2] 2. **获取模型接入点** - 在「火山方舟」控制台选择目标模型(如DeepSeek) - 查看模型详情页的「Endpoint ID」字段,格式示例:`deepseek-chat/v1`[^1] 3. **Dify平台配置** ```python # Dify配置示例(伪代码) model_endpoint = "deepseek-chat/v1" api_key = "火山引擎API_Key" service_url = "https://api.volcengine.com/v1" ``` - 在Dify的「模型供应商」设置中选择火山引擎 - 填入上述Endpoint ID和API密钥[^1] ### 二、核心用途 1. **服务路由** - Endpoint ID标识具体模型版本,如`deepseek-chat/v1`指向DeepSeek对话模型的v1版本 - 实现请求流量的精准分发,支持灰度发布[^3] 2. **权限控制** - 配合API Key完成双重身份验证 - 用量统计粒度精确到每个Endpoint 3. **服务扩展** - 通过不同Endpoint区分开发/生产环境 - 支持RAG服务配置(需结合云搜索服务)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值