时间复杂度:根号n一般来说大于log(n)

文章探讨了函数f(x)=√x-log_2x的导数,确定了其单调性的变化,指出函数在x=(ln2)^2/4处从减变增。图像显示函数与y=log_2x的交点在x=4和x=16。当x>16时,√x总是大于log_2x,强调了√x的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f ( x ) = x − l o g 2 x f(x)=\sqrt{x}-log_2 x f(x)=x log2x
对这函数求导后,比较分母大小,可以得到结论
在这里插入图片描述

f ( x ) f(x) f(x)先减后增,分界点为 x = 4 ( l n 2 ) 2 x = \frac{4}{(ln2)^2} x=(ln2)24
f ( x ) f(x) f(x)的图像如下所示:
在这里插入图片描述

![在这里插入图片描述](https://img-blog.csdnimg.cn/4967018e954341298bdf20b59524f236.png
两个函数的图像如下,只在 x = 4 , 16 x = 4,16 x=4,16时有交点
在这里插入图片描述

当n>16时,就必然 x > l o g 2 x \sqrt{x}>log_2 x x >log2x,故一般来说, l o g 2 x log_2 x log2x更优
灵神题解的优越性,灵神题解

典例 2:
题目中灵神题解为nlogn解法,通过以下的分块解法为n n \sqrt{n} n ,可以明显发现差距——n n \sqrt{n} n 要慢很多。
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值