08-Spark core基础

1.Spark简介

2.Spark内部原理(代码块环境为虚拟机 spark客户端)

2.1RDD

2.1.1RDD的创建

  • 从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD
    1)使用parallelize()从集合创建
val rdd = sc.parallelize(Array(1,2,3,4,5,6,7,8))

2)使用makeRDD()从集合创建

val rdd1 = sc.makeRDD(Array(1,2,3,4,5,6,7,8))
  • 由外部存储系统的数据集创建
    包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
val rdd2= sc.textFile("hdfs://hadoop102:9000/RELEASE")

2.1.2RDD的转换

2.1.2.1Value型
  • Map(func):返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
  • mapPartitions(func):类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]。假设有N个元素,有M个分区,那么map的函数的将被调用N次,而mapPartitions被调用M次,一个函数一次处理所有分区。
  • mapPartitionsWithIndex(func):类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U];
val rdd = sc.parallelize(Array(1,2,3,4))
val indexRdd = rdd.mapPartitionsWithIndex((index,items)=>(items.map((index,_))))
 indexRdd.collect
//结果
res2: Array[(Int, Int)] = Array((0,1), (0,2), (1,3), (1,4))
  • flatMap(func):类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)
  • map()和mapPartition()的区别:
    1)map():每次处理一条数据
    2)mapPartition():每次处理一个分区的数据,这个分区的数据处理完后,原RDD中分区的数据才能释放,可能导致OOM。
    3)开发指导:当内存空间较大的时候建议使用mapPartition(),以提高处理效率。
  • glom:将每一个分区形成一个数组,形成新的RDD类型时RDD[Array[T]]
val rdd = sc.parallelize(1 to 16,4)
 rdd.glom().collect()
 //结果
 Array[Array[Int]] = Array(Array(1, 2, 3, 4), Array(5, 6, 7, 8), Array(9, 10, 11, 12), Array(13, 14, 15, 16))
  • groupBy(func):分组,按照传入函数的返回值进行分组。将相同的key对应的值放入一个迭代器。
val rdd = sc.parallelize(1 to 4)
val group = rdd.groupBy(_%2)
group.collect
//结果
Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(2, 4)), (1,CompactBuffer(1, 3)))
  • filter(func):过滤。返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成。
var sourceFilter = sc.parallelize(Array("xiaoming","xiaojiang","xiaohe","dazhi"))
 sourceFilter.collect()
 val filter = sourceFilter.filter(_.contains("xiao"))
  filter.collect()
  //结果
  Array[String] = Array(xiaoming, xiaojiang, xiaohe)
  • sample(withReplacement, fraction, seed):以指定的随机种子随机抽样出数量为fraction的数据,withReplacement表示是抽出的数据是否放回,true为有放回的抽样,false为无放回的抽样,seed用于指定随机数生成器种子。
val rdd = sc.parallelize(1 to 10)
//放回抽样
 var sample1 = rdd.sample(true,0.4,2)
 sample1.collect()
 //结果
 Array[Int] = Array(1, 2, 2, 7, 7, 8, 9)
 //不放回
 var sample2 = rdd.sample(false,0.2,3)
 sample2.collect()
 //结果
 Array[Int] = Array(1, 9)
  • distinct([numTasks])):对源RDD进行去重后返回一个新的RDD。默认情况下,只有8个并行任务来操作,但是可以传入一个可选的numTasks参数改变它。
  • coalesce(numPartitions):缩减分区数,用于大数据集过滤后,提高小数据集的执行效率
val rdd = sc.parallelize(1 to 16,4)
 val coalesceRDD = rdd.coalesce(3)
  • repartition(numPartitions):根据分区数,重新通过网络随机洗牌所有数据
 val rdd = sc.parallelize(1 to 16,4)
 rdd.partitions.size//分区数4
 val rerdd = rdd.repartition(2)
  rdd.partitions.size//分区数2
  • coalesce和repartition的区别
  1. coalesce重新分区,可以选择是否进行shuffle过程。由参数shuffle: Boolean = false/true决定。
  2. repartition实际上是调用的coalesce,默认是进行shuffle的。源码如下:
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
  coalesce(numPartitions, shuffle = true)
}
  • sortBy(func,[ascending], [numTasks]):使用func先对数据进行处理,按照处理后的数据比较结果排序,默认为正序。
val rdd = sc.parallelize(List(2,1,3,4))
rdd.sortBy(x => x).collect()//Array[Int] = Array(1, 2, 3, 4)
rdd.sortBy(x => x%3).collect()//res12: Array[Int] = Array(3, 4, 1, 2)
  • pipe(command, [envVars]):管道,针对每个分区,都执行一个shell脚本,返回输出的RDD
2.1.2.2双Value型交互
  • union(otherDataset):对源RDD和参数RDD求并集后返回一个新的RDD
val rdd1 = sc.parallelize(1 to 5)
val rdd2 = sc.parallelize(5 to 10)
val rdd3 = rdd1.union(rdd2)
rdd3.collect()//Array[Int] = Array(1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10)
  • subtract (otherDataset):计算差的一种函数,去除两个RDD中相同的元素,不同的RDD将保留下来
val rdd = sc.parallelize(3 to 8)
val rdd1 = sc.parallelize(1 to 5)
 rdd.subtract(rdd1).collect()// Array[Int] = Array(8, 6, 7)
  • intersection(otherDataset):对源RDD和参数RDD求交集后返回一个新的RDD
 val rdd1 = sc.parallelize(1 to 7)
 val rdd2 = sc.parallelize(5 to 10)
 val rdd3 = rdd1.intersection(rdd2)
  rdd3.collect()//Array[Int] = Array(5, 6, 7)
  • cartesian(otherDataset):作用:笛卡尔积(尽量避免使用)
 val rdd1 = sc.parallelize(1 to 3)
  val rdd2 = sc.parallelize(2 to 5)
   rdd1.cartesian(rdd2).collect()//Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4), (3,5))
  • zip(otherDataset):将两个RDD组合成Key/Value形式的RDD,这里默认两个RDD的partition数量以及元素数量都相同,否则会抛出异常。
val rdd1 = sc.parallelize(Array(1,2,3),3)
val rdd2 = sc.parallelize(Array("a","b","c"),3)
 rdd1.zip(rdd2).collect//Array[(Int, String)] = Array((1,a), (2,b), (3,c))
2.1.2.3Key-Value型
  • partitionBy:对pairRDD进行分区操作,如果原有的partionRDD和现有的partionRDD是一致的话就不进行分区, 否则会生成ShuffleRDD,即会产生shuffle过程。
val rdd = sc.parallelize(Array((1,"aaa"),(2,"bbb"),(3,"ccc"),(4,"ddd")),4)
rdd.partitions.size//4
var rdd2 = rdd.partitionBy(new org.apache.spark.HashPartitioner(2))
rdd2.partitions.size//2
  • groupByKey:groupByKey也是对每个key进行操作,但只生成一个sequence。
val words = Array("one", "two", "two", "three", "three", "three")
val wordPairsRDD = sc.parallelize(words).map(word => (word, 1))
val group = wordPairsRDD.groupByKey()
group.collect()//Array[(String, Iterable[Int])] = Array((two,CompactBuffer(1, 1)), (one,CompactBuffer(1)), (three,CompactBuffer(1, 1, 1)))
group.map(t => (t._1, t._2.sum))
res2.collect()//Array[(String, Int)] = Array((two,2), (one,1), (three,3))
  • reduceByKey(func, [numTasks]) : 在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,reduce任务的个数可以通过第二个可选的参数来设置。
val rdd = sc.parallelize(List(("female",1),("male",5),("female",5),("male",2)))
val reduce = rdd.reduceByKey((x,y) => x+y)
 reduce.collect()// Array[(String, Int)] = Array((female,6), (male,7))
  • reduceByKey和groupByKey的区别:
  1. reduceByKey:按照key进行聚合,在shuffle之前有combine(预聚合)操作,返回结果是RDD[k,v].
  2. groupByKey:按照key进行分组,直接进行shuffle。
  3. 开发指导:reduceByKey比groupByKey,建议使用。但是需要注意是否会影响业务逻辑。
  • aggregateByKey(zeroValue:U,[partitioner: Partitioner]) (seqOp: (U, V) => U,combOp: (U, U) => U):在kv对的RDD中,,按key将value进行分组合并,合并时,将每个value和初始值作为seq函数的参数,进行计算,返回的结果作为一个新的kv对,然后再将结果按照key进行合并,最后将每个分组的value传递给combine函数进行计算(先将前两个value进行计算,将返回结果和下一个value传给combine函数,以此类推),将key与计算结果作为一个新的kv对输出。
 val rdd = sc.parallelize(List(("a",3),("a",2),("c",4),("b",3),("c",6),("c",8)),2)
  val agg = rdd.aggregateByKey(0)(math.max(_,_),_+_)
  agg.collect()//Array[(String, Int)] = Array((b,3), (a,3), (c,12))
  • foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]:
    aggregateByKey的简化操作,seqop和combop相同
val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
 val agg = rdd.foldByKey(0)(_+_)
 agg.collect()//Array[(Int, Int)] = Array((3,14), (1,9), (2,3))
  • combineByKey[C] (createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C) :
    对相同K,把V合并成一个集合。
val input = sc.parallelize(Array(("a", 88), ("b", 95), ("a", 91), ("b", 93), ("a", 95), ("b", 98)),2)
val combine = input.combineByKey((_,1),(acc:(Int,Int),v)=>(acc._1+v,acc._2+1),(acc1:(Int,Int),acc2:(Int,Int))=>(acc1._1+acc2._1,acc1._2+acc2._2))
combine.collect//Array[(String, (Int, Int))] = Array((b,(286,3)), (a,(274,3)))
  • sortByKey([ascending], [numTasks]):作用:在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD
val rdd = sc.parallelize(Array((3,"aa"),(6,"cc"),(2,"bb"),(1,"dd")))
 rdd.sortByKey(true).collect()//Array[(Int, String)] = Array((1,dd), (2,bb), (3,aa), (6,cc))
 rdd.sortByKey(false).collect()// Array[(Int, String)] = Array((6,cc), (3,aa), (2,bb), (1,dd))
  • mapValues:针对于(K,V)形式的类型只对V进行操作
val rdd3 = sc.parallelize(Array((1,"a"),(1,"d"),(2,"b"),(3,"c")))
rdd3.mapValues(_+"|||").collect()//Array[(Int, String)] = Array((1,a|||), (1,d|||), (2,b|||), (3,c|||))
  • join(otherDataset, [numTasks]) :作用:在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD
  • cogroup(otherDataset, [numTasks]):在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable,Iterable))类型的RDD

2.1.3Action

  • reduce(func):通过func函数聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据。
    在这里插入图片描述
  • count():返回RDD中元素的个数
    在这里插入图片描述
  • first():返回RDD中的第一个元素
    在这里插入图片描述
  • take(n):返回一个由RDD的前n个元素组成的数组
    在这里插入图片描述
  • takeOrdered(n):返回该RDD排序后的前n个元素组成的数组\
  • aggregate(zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U):
    aggregate函数将每个分区里面的元素通过seqOp和初始值进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。
    在这里插入图片描述
  • fold(num)(func):折叠操作,aggregate的简化操作,seqop和combop一样
    在这里插入图片描述
  • saveAsTextFile(path):将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本
  • saveAsSequenceFile(path): 将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。
  • saveAsObjectFile(path) :用于将RDD中的元素序列化成对象,存储到文件中
  • countByKey():针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数
  • foreach(func):在数据集的每一个元素上,运行函数func进行更新
    在这里插入图片描述

2.1.4RDD依赖关系

  • Lineage:RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
  • 宽依赖:宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition,会引起shuffle,总结:宽依赖我们形象的比喻为超生
    在这里插入图片描述
  • 窄依赖:窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用,窄依赖我们形象的比喻为独生子女
    在这里插入图片描述
  • DAG:
    DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。
    在这里插入图片描述

2.1.5RDD缓存

RDD通过persist方法或cache方法可以将前面的计算结果缓存,默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中。
但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。
在这里插入图片描述
通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。

2.1.6RDD CheckPoint

Spark中对于数据的保存除了持久化操作之外,还提供了一种检查点的机制,检查点(本质是通过将RDD写入Disk做检查点)是为了通过lineage做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。检查点通过将数据写入到HDFS文件系统实现了RDD的检查点功能。
为当前RDD设置检查点。该函数将会创建一个二进制的文件,并存储到checkpoint目录中,该目录是用SparkContext.setCheckpointDir()设置的。在checkpoint的过程中,该RDD的所有依赖于父RDD中的信息将全部被移除。对RDD进行checkpoint操作并不会马上被执行,必须执行Action操作才能触发。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值