sklearn学习
文章平均质量分 74
jaeden_xu
这个作者很懒,什么都没留下…
展开
-
【sklearn学习】LightGBM
..原创 2022-06-11 09:18:12 · 3802 阅读 · 0 评论 -
【sklearn学习】多层感知机MLP
MLPClassifier和MLPRegressionsklearn.neural_network.MLPClassifierclasssklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,),activation='relu',*,solver='adam',alpha=0.0001,batch_size='auto',learning_rate='constant',learning_rate_init=0.00...原创 2022-04-06 21:00:19 · 4066 阅读 · 0 评论 -
【sklearn学习】支持向量机SVM
classsklearn.svm.SVC(*,C=1.0,kernel='rbf',degree=3,gamma='scale',coef0=0.0,shrinking=True,probability=False,tol=0.001,cache_size=200,class_weight=None,verbose=False,max_iter=-1,decision_function_shape='ovr',break_ties=False,random_state=...原创 2022-04-06 20:57:59 · 1776 阅读 · 0 评论 -
【sklearn学习】线性回归LinearRegression
多元线性回归指一个样本中有多个特征的线性回归问题sklearn.linear_model.LinearRegressionclass sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_jobs=None, positive=False)fit_intercept:默认为True,计算模型的截距 normalize 默认使False copy_X原创 2022-04-06 16:20:43 · 5409 阅读 · 0 评论 -
【sklearrn学习】朴素贝叶斯NaiveBayes
朴素贝叶斯是直接衡量标签和特征之间的概率关系的有监督学习算法sklearn.naive_bayes.GaussianNBclass sklearn.naive_bayes.GaussianNB(*, priors=None, var_smoothing=1e-09)prior:类的先验概率,如果不指定,则自行根据数据计算先验概率var_smoothing:浮点数,默认1e-9>>> import numpy as np>>> X = np.arra原创 2022-04-06 16:20:11 · 2505 阅读 · 0 评论 -
【sklearn学习】集成算法之梯度提升树GBDT
梯度提升树(Gradient Boosting Decision Tree, GBDT)是提升法中的代表算法GBDT中包含Boosting三要素损失函数:用以衡量模型预测结果与真实结果的差异 弱评估器:决策树,不同的boosting算法使用不同的建树流程 综合集成结果:集成算法具体如何输出集成结果建模流程:依据上一个弱评估器的结果,计算损失函数,并使用损失函数自适应影响下一个弱评估器的构建。集成模型输出的结果,受到整体所有弱评估器的影响。GBDT的不同弱评估器GBDT的弱评原创 2022-04-06 16:19:15 · 2235 阅读 · 0 评论 -
【sklearn学习】集成算法之XGBoost
XGBoost是一个以提升树为核心的算法系统XGBoost中包含Boosting三要素损失函数:用以衡量模型预测结果与真实结果的差异 弱评估器:决策树,不同的boosting算法使用不同的建树流程 综合集成结果:集成算法具体如何输出集成结果原生代码必须使用XGBoost自定义的数据结构DMatrix,能够保证xgboost算法运行更快,并且能够迁移到GPU上运行。以字典形式设置参数使用xgboost中自带的方法xgb.train或xgb.cv进行训练# lightgbm原生接口原创 2022-04-06 16:18:55 · 4758 阅读 · 0 评论 -
【sklearn学习】逻辑回归LogisticRegression
使用于分类问题中的回归算法逻辑回归对线性关系的拟合效果好逻辑回归计算快逻辑回归返回的分类结果不固定,而是以小数的形式呈现的类概率数字逻辑回归有抗噪能力强的特点,在小数据集上表现较好sklearn.linear_model.LogisticRegressionsklearn.linear_model.LogisticRegressionCVclasssklearn.linear_model.LogisticRegression(penalty='l2',*,dual=Fals...原创 2022-03-29 21:20:27 · 1430 阅读 · 0 评论 -
【sklearn学习】降维算法PCA和SVD
sklearn中的降维算法主成分分析独立成分分析decomposition.PCAclass sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None)PCA使用的信息衡量指标,就是样本方差,又称为可解释性方差,方差越大,特征所带的信息量越多。n_comp原创 2022-03-29 21:18:49 · 466 阅读 · 0 评论 -
【sklearn学习】随机森林RandomForest
集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合结果,以此来获取比单个模型更好的回归或分类表现。三类集成算法:装袋法(Bagging)、提升法(Boosting)、stacking装袋法:构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果。代表模型有随机森林提升法:结合弱评估器对难以评估的样本进行预测,从而构建一个强评估器。代表模型是Adaboost和梯度提升树sklearn中的集成算法模块原创 2022-03-29 21:12:02 · 2619 阅读 · 0 评论 -
【sklearn学习】决策树、分类树、剪枝策略
模块sklarn.treesklearn中决策树的类都在“tree”这个模块之下,这个模块总共包含五个类:tree.DecisionTreeClassifier 分类树 tree.DecisionTreeRegressor 回归树 tree.export_graphviz 将生成的决策树导出为DOT格式 tree.ExtraTreeClassifier 高随机版本的分类树 tree.ExtraTreeRegressor 高随机版本的回归树 分类树对应的原创 2022-03-29 21:09:56 · 827 阅读 · 0 评论