根据用户行为数据创建ALS模型并召回商品

二 根据用户行为数据创建ALS模型并召回商品

2.0 用户行为数据拆分

  • 方便练习可以对数据做拆分处理

    • pandas的数据分批读取 chunk 厚厚的一块 相当大的数量或部分
    import pandas as pd
    reader = pd.read_csv('behavior_log.csv',chunksize=100,iterator=True)
    count = 0;
    for chunk in reader:
        count += 1
        if count ==1:
            chunk.to_csv('test4.csv',index = False)
        elif count>1 and count<1000:
            chunk.to_csv('test4.csv',index = False, mode = 'a',header = False)
        else:
            break
    pd.read_csv('test4.csv')
    

2.1 预处理behavior_log数据集

  • 创建spark session
import os
# 配置spark driver和pyspark运行时,所使用的python解释器路径
PYSPARK_PYTHON = "/home/hadoop/miniconda3/envs/datapy365spark23/bin/python"
JAVA_HOME='/home/hadoop/app/jdk1.8.0_191'
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON
os.environ['JAVA_HOME']=JAVA_HOME
# spark配置信息
from pyspark import SparkConf
from pyspark.sql import SparkSession

SPARK_APP_NAME = "preprocessingBehaviorLog"
SPARK_URL = "spark://192.168.199.188:7077"

conf = SparkConf()    # 创建spark config对象
config = (
	("spark.app.name", SPARK_APP_NAME),    # 设置启动的spark的app名称,没有提供,将随机产生一个名称
	("spark.executor.memory", "6g"),    # 设置该app启动时占用的内存用量,默认1g
	("spark.master", SPARK_URL),    # spark master的地址
    ("spark.executor.cores", "4"),    # 设置spark executor使用的CPU核心数
    # 以下三项配置,可以控制执行器数量
#     ("spark.dynamicAllocation.enabled", True),
#     ("spark.dynamicAllocation.initialExecutors", 1),    # 1个执行器
#     ("spark.shuffle.service.enabled", True)
# 	('spark.sql.pivotMaxValues', '99999'),  # 当需要pivot DF,且值很多时,需要修改,默认是10000
)
# 查看更详细配置及说明:https://spark.apache.org/docs/latest/configuration.html

conf.setAll(config)

# 利用config对象,创建spark session
spark = SparkSession.builder.config(conf=conf).getOrCreate()
  • 从hdfs中加载csv文件为DataFrame
# 从hdfs加载CSV文件为DataFrame
df = spark.read.csv("hdfs://localhost:9000/datasets/behavior_log.csv", header=True)
df.show()    # 查看dataframe,默认显示前20条
# 大致查看一下数据类型
df.printSchema()    # 打印当前dataframe的结构

显示结果:

+------+----------+----+-----+------+
|  user|time_stamp|btag| cate| brand|
+------+----------+----+-----+------+
|558157|1493741625|  pv| 6250| 91286|
|558157|1493741626|  pv| 6250| 91286|
|558157|1493741627|  pv| 6250| 91286|
|728690|1493776998|  pv|11800| 62353|
|332634|1493809895|  pv| 1101|365477|
|857237|1493816945|  pv| 1043|110616|
|619381|1493774638|  pv|  385|428950|
|467042|1493772641|  pv| 8237|301299|
|467042|1493772644|  pv| 8237|301299|
|991528|1493780710|  pv| 7270|274795|
|991528|1493780712|  pv| 7270|274795|
|991528|1493780712|  pv| 7270|274795|
|991528|1493780712|  pv| 7270|274795|
|991528|1493780714|  pv| 7270|274795|
|991528|1493780765|  pv| 7270|274795|
|991528|1493780714|  pv| 7270|274795|
|991528|1493780765|  pv| 7270|274795|
|991528|1493780764|  pv| 7270|274795|
|991528|1493780633|  pv| 7270|274795|
|991528|1493780764|  pv| 7270|274795|
+------+----------+----+-----+------+
only showing top 20 rows

root
 |-- user: string (nullable = true)
 |-- time_stamp: string (nullable = true)
 |-- btag: string (nullable = true)
 |-- cate: string (nullable = true)
 |-- brand: string (nullable = true)
  • 从hdfs加载数据为dataframe,并设置结构
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, LongType
# 构建结构对象
schema = StructType([
    StructField("userId", IntegerType()),
    StructField("timestamp", LongType()),
    StructField("btag", StringType()),
    StructField("cateId", IntegerType()),
    StructField("brandId", IntegerType())
])
# 从hdfs加载数据为dataframe,并设置结构
behavior_log_df = spark.read.csv("hdfs://localhost:8020/datasets/behavior_log.csv", header=True, schema=schema)
behavior_log_df.show()
behavior_log_df.count() 

显示结果:

+------+----------+----+------+-------+
|userId| timestamp|btag|cateId|brandId|
+------+----------+----+------+-------+
|558157|1493741625|  pv|  6250|  91286|
|558157|1493741626|  pv|  6250|  91286|
|558157|1493741627|  pv|  6250|  91286|
|728690|1493776998|  pv| 11800|  62353|
|332634|1493809895|  pv|  1101| 365477|
|857237|1493816945|  pv|  1043| 110616|
|619381|1493774638|  pv|   385| 428950|
|467042|1493772641|  pv|  8237| 301299|
|467042|1493772644|  pv|  8237| 301299|
|991528|1493780710|  pv|  7270| 274795|
|991528|1493780712|  pv|  7270| 274795|
|991528|1493780712|  pv|  7270| 274795|
|991528|1493780712|  pv|  7270| 274795|
|991528|1493780714|  pv|  7270| 274795|
|991528|1493780765|  pv|  7270| 274795|
|991528|1493780714|  pv|  7270| 274795|
|991528|1493780765|  pv|  7270| 274795|
|991528|1493780764|  pv|  7270| 274795|
|991528|1493780633|  pv|  7270| 274795|
|991528|1493780764|  pv|  7270| 274795|
+------+----------+----+------+-------+
only showing top 20 rows

root
 |-- userId: integer (nullable = true)
 |-- timestamp: long (nullable = true)
 |-- btag: string (nullable = true)
 |-- cateId: integer (nullable = true)
 |-- brandId: integer (nullable = true)
  • 分析数据集字段的类型和格式
    • 查看是否有空值
    • 查看每列数据的类型
    • 查看每列数据的类别情况
print("查看userId的数据情况:", behavior_log_df.groupBy("userId").count().count())
# 约113w用户
#注意:behavior_log_df.groupBy("userId").count()  返回的是一个dataframe,这里的count计算的是每一个分组的个数,但当前还没有进行计算
# 当调用df.count()时才开始进行计算,这里的count计算的是dataframe的条目数,也就是共有多少个分组
查看user的数据情况: 1136340
print("查看btag的数据情况:", behavior_log_df.groupBy("btag").count().collect())    # collect会把计算结果全部加载到内存,谨慎使用
# 只有四种类型数据:pv、fav、cart、buy
# 这里由于类型只有四个,所以直接使用collect,把数据全部加载出来
查看btag的数据情况: [Row(btag='buy', count=9115919), Row(btag='fav', count=9301837), Row(btag='cart', count=15946033), Row(btag='pv', count=688904345)]
print("查看cateId的数据情况:", behavior_log_df.groupBy("cateId").count().count())
# 约12968类别id
查看cateId的数据情况: 12968
print("查看brandId的数据情况:", behavior_log_df.groupBy("brandId").count().count())
# 约460561品牌id
查看brandId的数据情况: 460561
print("判断数据是否有空值:", behavior_log_df.count(), behavior_log_df.dropna().count())
# 约7亿条目723268134 723268134
# 本数据集无空值条目,可放心处理
判断数据是否有空值: 723268134 723268134
  • pivot透视操作,把某列里的字段值转换成行并进行聚合运算(pyspark.sql.GroupedData.pivot)
    • 如果透视的字段中的不同属性值超过10000个,则需要设置spark.sql.pivotMaxValues,否则计算过程中会出现错误。文档介绍
# 统计每个用户对各类商品的pv、fav、cart、buy数量
cate_count_df = behavior_log_df.groupBy(behavior_log_df.userId, behavior_log_df.cateId).pivot("btag",["pv","fav","cart","buy"]).count()
cate_count_df.printSchema()    # 此时还没有开始计算

显示效果:

root
 |-- userId: integer (nullable = true)
 |-- cateId: integer (nullable = true)
 |-- pv: long (nullable = true)
 |-- fav: long (nullable = true)
 |-- cart: long (nullable = true)
 |-- buy: long (nullable = true)
  • 统计每个用户对各个品牌的pv、fav、cart、buy数量并保存结果
# 统计每个用户对各个品牌的pv、fav、cart、buy数量
brand_count_df = behavior_log_df.groupBy(behavior_log_df.userId, behavior_log_df.brandId).pivot("btag",["pv","fav","cart","buy"]).count()
# brand_count_df.show()    # 同上
# 113w * 46w
# 由于运算时间比较长,所以这里先将结果存储起来,供后续其他操作使用
# 写入数据时才开始计算
cate_count_df.write.csv("hdfs://localhost:9000/preprocessing_dataset/cate_count.csv", header=True)
brand_count_df.write.csv("hdfs://localhost:9000/preprocessing_dataset/brand_count.csv", header=True)
好的,这是一个具体的例子,我会尽可能详细地解释,希望对你有帮助。 首先,我们需要导入必要的库: ```python from pyspark.ml.recommendation import ALS from pyspark.ml.evaluation import RegressionEvaluator ``` 然后,我们需要读入菜品数据和评分数据: ```python menu_df = spark.read.csv("menu.csv", header=True, inferSchema=True) rating_df = spark.read.csv("rating.csv", header=True, inferSchema=True) ``` 接下来,我们需要将菜品数据和评分数据进行合并: ```python menu_rating_df = menu_df.join(rating_df, ["menu_id"]) ``` 然后,我们需要将用户 ID 和菜品 ID 转换为整数类型: ```python menu_rating_df = menu_rating_df.select(menu_rating_df["user_id"].cast("integer"), menu_rating_df["menu_id"].cast("integer"), menu_rating_df["rating"]) ``` 接着,我们需要使用 ALS 模型进行训练,设置参数并训练模型: ```python als = ALS(maxIter=5, regParam=0.01, userCol="user_id", itemCol="menu_id", ratingCol="rating") model = als.fit(menu_rating_df) ``` 然后,我们需要选择一个用户进行推荐,这里我们选择用户 ID 为 1: ```python user_id = 1 user_df = menu_df.select("menu_id").distinct().withColumn("user_id", lit(user_id)) recommendations = model.transform(user_df).orderBy("prediction", ascending=False).limit(10) ``` 最后,我们需要将推荐结果转换为 Pandas DataFrame,以便展示: ```python recommendations_pandas_df = recommendations.toPandas() ``` 我们可以使用 Pandas 库来输出推荐结果: ```python for i in range(10): print("Recommendation {} : {}".format(i+1, recommendations_pandas_df["menu_id"][i])) ``` 这样,我们就完成了对菜品和评分数据预处理后,使用 ALS 模型评价后对某用户推荐10道新菜品的代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lucky-zhao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值