跑bmask-rcnn遇到的几个小坑

源码地址

hustvl/BMaskR-CNN: Boundary-preserving Mask R-CNN (ECCV 2020) (github.com)

1.遇到的问题1:安装detectron2

请务必按照官方教程安装,尤其是使用windows+anaconda,推荐使用源码安装

切勿pip

官方安装教程:

Use Custom Datasets — detectron2 0.6 documentation

2.遇到的问题2:缺少文件bmask_rcnn_R_50_FPN_1x.yaml(或者其他配置文件)

在这里下载:

BMaskR-CNN/projects/BMaskR-CNN/configs at master · hustvl/BMaskR-CNN (github.com)

3.遇到的问题3:KeyError: 'Non-existent config key: MODEL.PRETRAINED_MODELS'

参考

KeyError: 'Non-existent config key: MODEL.PRETRAINED_MODELS' · Issue #9 · zjhuang22/maskscoring_rcnn (github.com)

在根目录->tools->train_net.py中,setup()函数中添加cfg.set_new_allowed(True)

4.遇到的问题4:KeyError: "No object named 'BoundaryROIHeads' found in 'ROI_HEADS' registry!"

需要把根目录下的BMaskR-CNN文件夹内的bmaskrcnn文件夹,复制到根目录下

然后在根目录->tools->train_net.py中添加

import bmaskrcnn

5.遇到的问题5:如何训练自己的数据集

此部分可参考基于detectron2训练的mask r-cnn,训练代码是类似的,下面贴了一份我用来训练的代码

#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Detection Training Script.

This scripts reads a given config file and runs the training or evaluation.
It is an entry point that is made to train standard models in detectron2.

In order to let one script support training of many models,
this script contains logic that are specific to these built-in models and therefore
may not be suitable for your own project.
For example, your research project perhaps only needs a single "evaluator".

Therefore, we recommend you to use detectron2 as an library and take
this file as an example of how to use the library.
You may want to write your own script with your datasets and other customizations.
"""

import logging
import os
from collections import OrderedDict
import torch

import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import (
    CityscapesInstanceEvaluator,
    CityscapesSemSegEvaluator,
    COCOEvaluator,
    COCOPanopticEvaluator,
    DatasetEvaluators,
    LVISEvaluator,
    PascalVOCDetectionEvaluator,
    SemSegEvaluator,
    verify_results,
)
from detectron2.modeling import GeneralizedRCNNWithTTA
import sys

sys.path.append('BMaskR-CNN')

import bmaskrcnn
from detectron2.data.datasets import register_coco_instances
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.coco import load_coco_json
import pycocotools

# 声明类别,尽量保持
CLASS_NAMES = ["_background_", '类别1', '类别2', '类别3,以此类推']
# 数据集路径
DATASET_ROOT = '这里放你的数据集根目录'
ANN_ROOT = os.path.join(DATASET_ROOT, 'annotations')

TRAIN_PATH = os.path.join(DATASET_ROOT, 'train2014')
VAL_PATH = os.path.join(DATASET_ROOT, 'val2014')

TRAIN_JSON = os.path.join(ANN_ROOT, 'instances_train2014.json')
# VAL_JSON = os.path.join(ANN_ROOT, 'val.json')
VAL_JSON = os.path.join(ANN_ROOT, 'instances_val2014.json')

# 声明数据集的子集
PREDEFINED_SPLITS_DATASET = {
    "train2014": (TRAIN_PATH, TRAIN_JSON),
    "val2014": (VAL_PATH, VAL_JSON),
}


# ===========以下有两种注册数据集的方法,本人直接用的第二个plain_register_dataset的方式 也可以用register_dataset的形式==================
# 注册数据集(这一步就是将自定义数据集注册进Detectron2)
def register_dataset():
    """
    purpose: register all splits of dataset with PREDEFINED_SPLITS_DATASET
    """
    for key, (image_root, json_file) in PREDEFINED_SPLITS_DATASET.items():
        register_dataset_instances(name=key,
                                   json_file=json_file,
                                   image_root=image_root)


# 注册数据集实例,加载数据集中的对象实例
def register_dataset_instances(name, json_file, image_root):
    """
    purpose: register dataset to DatasetCatalog,
             register metadata to MetadataCatalog and set attribute
    """
    DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name))
    MetadataCatalog.get(name).set(json_file=json_file,
                                  image_root=image_root,
                                  evaluator_type="coco")


# =============================
# 注册数据集和元数据
def plain_register_dataset():
    # 训练集
    DatasetCatalog.register("train2014", lambda: load_coco_json(TRAIN_JSON, TRAIN_PATH))
    MetadataCatalog.get("train2014").set(thing_classes=CLASS_NAMES,  # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
                                         evaluator_type='coco',  # 指定评估方式
                                         json_file=TRAIN_JSON,
                                         image_root=TRAIN_PATH)

    # DatasetCatalog.register("coco_my_val", lambda: load_coco_json(VAL_JSON, VAL_PATH, "coco_2017_val"))
    # 验证/测试集
    DatasetCatalog.register("val2014", lambda: load_coco_json(VAL_JSON, VAL_PATH))
    MetadataCatalog.get("val2014").set(thing_classes=CLASS_NAMES,  # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
                                       evaluator_type='coco',  # 指定评估方式
                                       json_file=VAL_JSON,
                                       image_root=VAL_PATH)


# 查看数据集标注,可视化检查数据集标注是否正确,
# 这个也可以自己写脚本判断,其实就是判断标注框是否超越图像边界
# 可选择使用此方法
def checkout_dataset_annotation(name="val2014"):
    # dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH, name)
    dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH)
    print(len(dataset_dicts))
    for i, d in enumerate(dataset_dicts, 0):
        # print(d)
        img = cv2.imread(d["file_name"])
        visualizer = Visualizer(img[:, :, ::-1], metadata=MetadataCatalog.get(name), scale=1.5)
        vis = visualizer.draw_dataset_dict(d)
        # cv2.imshow('show', vis.get_image()[:, :, ::-1])
        # cv2.imwrite('out/'+str(i) + '.jpg',vis.get_image()[:, :, ::-1])
        # cv2.waitKey(0)
        # if i == 200:
        #     break


class Trainer(DefaultTrainer):
    """
    We use the "DefaultTrainer" which contains pre-defined default logic for
    standard training workflow. They may not work for you, especially if you
    are working on a new research project. In that case you can write your
    own training loop. You can use "tools/plain_train_net.py" as an example.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each builtin dataset.
        For your own dataset, you can simply create an evaluator manually in your
        script and do not have to worry about the hacky if-else logic here.
        """
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
            evaluator_list.append(
                SemSegEvaluator(
                    dataset_name,
                    distributed=True,
                    num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
                    ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
                    output_dir=output_folder,
                )
            )
        if evaluator_type in ["coco", "coco_panoptic_seg"]:
            evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
        if evaluator_type == "coco_panoptic_seg":
            evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
        if evaluator_type == "cityscapes_instance":
            assert (
                    torch.cuda.device_count() >= comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesInstanceEvaluator(dataset_name)
        if evaluator_type == "cityscapes_sem_seg":
            assert (
                    torch.cuda.device_count() >= comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesSemSegEvaluator(dataset_name)
        elif evaluator_type == "pascal_voc":
            return PascalVOCDetectionEvaluator(dataset_name)
        elif evaluator_type == "lvis":
            return LVISEvaluator(dataset_name, cfg, True, output_folder)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)

    @classmethod
    def test_with_TTA(cls, cfg, model):
        logger = logging.getLogger("detectron2.trainer")
        # In the end of training, run an evaluation with TTA
        # Only support some R-CNN models.
        logger.info("Running inference with test-time augmentation ...")
        model = GeneralizedRCNNWithTTA(cfg, model)
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        res = OrderedDict({k + "_TTA": v for k, v in res.items()})
        return res


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    # args.config_file = "configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_runway.yaml"
    cfg.set_new_allowed(True)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    # 更改配置参数
    cfg.DATASETS.TRAIN = ("train2014",)  # 训练数据集名称
    cfg.DATASETS.TEST = ("val2014",)  # 验证数据集名称
    cfg.DATALOADER.NUM_WORKERS = 4  # 线程
    cfg.MODEL.RETINANET.NUM_CLASSES = 3 + 1

    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def main(args):
    cfg = setup(args)
    plain_register_dataset()  # # 修改

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )

        res = Trainer.test(cfg, model)
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)
        return res

    """
    If you'd like to do anything fancier than the standard training logic,
    consider writing your own training loop (see plain_train_net.py) or
    subclassing the trainer.
    """
    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    if cfg.TEST.AUG.ENABLED:
        trainer.register_hooks(
            [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
        )
    return trainer.train()


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    # register_coco_instances("bars", {}, "/public/home/chenweiwen/BMaskR-CNN/datasets/coco/annotations/instances_train2014.json", "/public/home/chenweiwen/BMaskR-CNN/datasets/coco/train2014/")
    # MODEL.ROI_HEADS.NUM_CLASSES = 3
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在使用自己的数据集训练Mask-RCNN过程中,可能会遇到以下一些坑: 1. 数据集标注问题:自己的数据集可能没有经过仔细的标注。标注不准确或不一致的物体边界框和分割掩码会影响模型的训练效果。因此,建议在标注数据集时要仔细检查和修正可能存在的错误。 2. 类别不平衡:如果数据集中的某些类别样本数量明显少于其他类别,训练模型时会导致类别不平衡的问题。这会影响模型对于少样本类别的学习效果。可以采用数据增强技术来扩充少样本类别的数据量,或者使用一些类别平衡的损失函数来解决此问题。 3. 没有合适的预训练模型:Mask-RCNN通常需要使用预训练模型进行初始化,以便更快地收敛到一个好的模型。但是,如果没有找到与自己的数据集相似的预训练模型,模型可能需要更多的训练时间和更多的数据才能达到较好的性能。 4. 训练参数选择:在使用自己的数据集训练Mask-RCNN时,一些关键的训练参数需要根据数据集的特点进行适当选择,如学习率、迭代次数、步长等。选择不合适的参数可能导致训练过程出现问题,如梯度爆炸、模型不收敛等。 5. 过拟合问题:如果训练集和验证集的样本相似度较高,模型很容易出现过拟合。过拟合会导致模型在训练集上表现较好,但在未见过的数据上表现较差。可以通过增加训练数据、使用正则化技术或减小模型复杂度等方法来缓解过拟合问题。 解决这些坑的方法包括:仔细检查和修正数据集标注问题,处理类别不平衡,寻找适合的预训练模型,合理选择训练参数,并采取防止过拟合的措施。同时,可以参考相关文献和开源代码,从其他人的经验中学习,并进行模型调优和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值