书生浦语三期实战营 [进阶] 茴香豆:企业级知识问答工具实践闯关任务

茴香豆:企业级知识问答工具实践闯关任务

1 Web 版茴香豆

1.1 创建 Web 版茴香豆账户和密码

登录 https://openxlab.org.cn/apps/detail/tpoisonooo/huixiangdou-web,可以看到 Web 版茴香豆的知识库注册页面,在对应处输入想要创建的知识库名称和密码,该名称就是 Web 版茴香豆的账户和密码,请牢记,以后对该知识助手进行维护和修改都要使用这个账户和密码。

1.2 创建 Web 版茴香豆知识库

完成账户创建或者输入已有账户密码后会进入相应知识库的开发页面,如图所示有以下功能:
点击添加文档的 查看或上传 按钮,对知识库文档进行修改,目前支持 pdf、word、markdown、excel、ppt、html 和 txt 格式文件的上传和删除。上传或删除文件后将自动进行特征提取,生成的向量知识库被用于后续 RAG 检索和相似性比对。
完成相关文档上传后,可以直接用下面的聊天测试窗口测试知识助手的效果:
在这里插入图片描述

1.3 通过配置正反例调优知识助手效果

在真实的使用场景中,调试知识助手回答相关问题和拒答无关问题(如闲聊)是保证回答准确率和效率十分重要的部分。茴香豆的架构中,除了利用 LLM 的功能判断问题相关性,也可以通过手动添加正例(希望模型回答的问题)和反例(希望模型拒答的问题)来调优知识助手的应答效果。

在 Web 版茴香豆中,点击添加正反例下的 查看或编辑 按钮,进入正反例添加页面,这里加了一个反例:今天天气如何?测试:在这里插入图片描述

2 茴香豆本地标准版搭建

在第一部分中,我们利用 Web 版茴香豆实现了零代码开发部署一款 RAG 知识助手,在接下来的部分,我们要动手尝试将茴香豆从源码部署到本地服务器(以 InternlmStudio 为例),并开发一款简单的知识助手 Demo。

2.1 环境搭建

2.1.1 配置服务器

镜像选择 Cuda12.2-conda ,资源类型选择 30% A*100。输入开发机名称 huixiangdou, 点击立即创建。

2.1.2 搭建茴香豆虚拟环境

命令行中输入一下命令,创建茴香豆专用 conda 环境:

studio-conda -o internlm-base -t huixiangdou

安装茴香豆

2.2.1 下载茴香豆

先从茴香豆仓库拉取代码到服务器:

cd /root
# 克隆代码仓库
git clone https://github.com/internlm/huixiangdou && cd huixiangdou
git checkout 79fa810
2.2.2 安装茴香豆所需依赖
conda activate huixiangdou
# parsing `word` format requirements
apt update
apt install python-dev libxml2-dev libxslt1-dev antiword unrtf poppler-utils pstotext tesseract-ocr flac ffmpeg lame libmad0 libsox-fmt-mp3 sox libjpeg-dev swig libpulse-dev
# python requirements
pip install BCEmbedding==0.1.5 cmake==3.30.2 lit==18.1.8 sentencepiece==0.2.0 protobuf==5.27.3 accelerate==0.33.0
pip install -r requirements.txt
# python3.8 安装 faiss-gpu 而不是 faiss
2.2.3 下载模型文件
# 创建模型文件夹
cd /root && mkdir models

# 复制BCE模型
ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 /root/models/bce-embedding-base_v1
ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 /root/models/bce-reranker-base_v1

# 复制大模型参数(下面的模型,根据作业进度和任务进行**选择一个**就行)
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b
2.2.4 更改配置文件
sed -i '9s#.*#embedding_model_path = "/root/models/bce-embedding-base_v1"#' /root/huixiangdou/config.ini
sed -i '15s#.*#reranker_model_path = "/root/models/bce-reranker-base_v1"#' /root/huixiangdou/config.ini
sed -i '43s#.*#local_llm_path = "/root/models/internlm2-chat-7b"#' /root/huixiangdou/config.ini

2.3 知识库创建

修改完配置文件后,就可以进行知识库的搭建,本次教程选用的是茴香豆和 MMPose 的文档,利用茴香豆搭建一个茴香豆和 MMPose 的知识问答助手。

conda activate huixiangdou

cd /root/huixiangdou && mkdir repodir

git clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou
git clone https://github.com/open-mmlab/mmpose    --depth=1 repodir/mmpose

# Save the features of repodir to workdir, and update the positive and negative example thresholds into `config.ini`
mkdir workdir
python3 -m huixiangdou.service.feature_store

在 huixiangdou 文件加下创建 repodir 文件夹,用来储存知识库原始文档。再创建一个文件夹 workdir 用来存放原始文档特征提取到的向量知识库。

在这里插入图片描述
知识库创建成功后会有一系列小测试,检验问题拒答和响应效果,如图所示,关于“mmpose 安装”的问题,测试结果可以很好的反馈相应答案和对应的参考文件,但关于“std::vector 使用”的问题,因为属于 C++ 范畴,不再在知识库范围内,测试结果显示拒答,说明我们的知识助手工作正常。

和 Web 版一样,本地版也可以通过编辑正反例来调整茴香豆的拒答和响应,正例位于 /root/huixiangdou/resource/good_questions.json 文件夹中,反例位于/root/huixiangdou/resource/bad_questions.json。

需要注意的是,每次更新原始知识文档和正反例,都需要重新运行 python3 -m huixiangdou.service.feature_store 命令进行向量知识库的重新创建和应答阈值的更新。

2.4 测试知识助手

2.4.1 命令行运行

运行下面的命令,可以用命令行对现有知识库问答助手进行测试:

conda activate huixiangdou
cd /root/huixiangdou
python3 -m huixiangdou.main --standalone

在这里插入图片描述

2.4.2 Gradio UI 界面测试

本节课程中,茴香豆助手搭建在远程服务器上,因此需要先建立本地和服务器之间的透传,透传默认的端口为 7860,在本地机器命令行中运行如下命令:

ssh -CNg -L 7860:127.0.0.1:7860 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

启动UI

conda activate huixiangdou
cd /root/huixiangdou
python3 -m huixiangdou.gradio

在本地浏览器中输入 127.0.0.1:7860 打开茴香豆助手测试页面,使用正反例测试一下:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值