Spark(四): Spark 核心编程(上)

Spark核心编程

* Spark 计算框架为了能够进行高并发和高吞吐的数据处理,封装了三大数据结构,用于处理不同的应用场景。三大数据结构分别是:
	* RDD:弹性分布式数据集
	* 累加器:分布式共享只写变量
	* 广播变量:分布式共享只读变量

RDD

在这里插入图片描述

  • RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
  • 在知道RDD运行的原理之前,先来研究一下IO的实现原理,看下图
    • IO的操作核心还是FileInputStream来读取文件File,外面的InputStreamReader和BufferReader主要是通过包装来将FileInputStream进行功能扩展,以此来达到更好的效果
      在这里插入图片描述
    • 而这种模式是一种设计思想也就是装饰者的设计模式
    • 而RDD是一种计算单元,这种计算单元就是有不同的计算方式组装到一起的,所以就类似于上面的装饰者模式,具体看下图
      在这里插入图片描述
      在这里插入图片描述
    • RDD的数据只有在调用collect方法时,才会真正执行业务逻辑操作,之前的封装都是功能的扩展
    • RDD是不保存数据的,但是IO可以临时保存一部分数据
  • 下面解释一下RDD的特点:
  • 弹性:
    • 存储的弹性:内存与磁盘的自动切换
    • 容错的弹性:数据丢失可以自动恢复
    • 计算的弹性:计算出错重试机制
    • 分片的弹性:可根据需要重新分片
  • 分布式:数据存储在大数据集群不同点上
  • 数据集:RDD封装了计算逻辑,并不保存数据
  • 数据抽象:RDD是一个抽象类,需要子类具体实现
  • 不可变:RDD封装了计算逻辑,是不可以改变,想要改变,只能产生新的RDD,在新的RDD里面封装计算逻辑
  • 可分区,并行计算

RDD 核心属性

  • 分区列表:RDD数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性
    在这里插入图片描述
  • 分区计算函数:Spark 在计算时,是使用分区函数对每一个分区进行计算
    在这里插入图片描述
  • RDD之间的依赖关系:RDD是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个RDD建立依赖关系
    在这里插入图片描述
  • 分区器:当数据为KV类型数据时,可以通过设定分区器自定义数据的分区
    在这里插入图片描述
  • 首选位置(可选):计算数据时,可以根据计算节点的状态来选择不同的节点位置进行计算
    在这里插入图片描述

RDD 执行原理

  • 从计算的角度来讲,数据处理过程中需要计算资源(内存 & CPU)和计算模型(逻辑)。执行时,需要将计算资源和计算模型进行协调和整合。
  • Spark框架在执行时,先申请资源,然后将应用程序的数据处理逻辑分解成一个一个的计算任务。然后将任务发到已经分配资源的计算节点上,按照指定的计算模型进行数据计算。最后得到计算结果。
  • RDD是Spark框架中用于数据处理的核心模型,接下来我们看看,在Yarn环境中,RDD的工作原理。
  1. 启动yarn集群环境
    在这里插入图片描述
  2. Spark 通过申请资源创建调度节点和计算节点
    在这里插入图片描述
  3. Spark 框架根据需求将计算逻辑根据分区划分成不同的任务
    在这里插入图片描述
  4. 调度节点将任务根据计算节点状态发送到对应的计算节点进行计算
    在这里插入图片描述
  • 从以上的流程来看,RDD就是将数据和逻辑进行封装,然后生成task发送给Executor的节点执行计算。

RDD 基础编程

RDD 创建
  1. 从集合(内存)中创建RDD:Spark 主要提供了两个方法:parallelize 和 makeRDD
    • 其中makeRDD 的源码时调用 parallelize 方法,只不过这个方法更好记忆
object Spark01_RDD_Memory {
  def main(args: Array[String]): Unit = {

    // 准备环境
    // "local[*]"里面的'*'表示的是CPU线程的核数,如果去掉只写local就表示单线程
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)

    // 创建RDD
    // 从内存中创建RDD,将内存中集合的数据作为处理的数据源
    val seq = Seq[Int](1,2,3,4)
    //parallelize:并行(同时执行要看CPU核数)
    //val rdd:RDD[Int] = sc.parallelize(seq)
    val rdd = sc.makeRDD(seq)
    rdd.collect().foreach(println)

    // 关闭环境
    sc.stop()
  }
}
  1. 从外部存储(文件)创建RDD:由外部存储系统的数据集创建 RDD 包括:本地的文件系统,所有 Hadoop 支持的数据集,比如 HDFS、HBase 等。
object Spark02_RDD_File {
  def main(args: Array[String]): Unit = {

    // 准备环境
    // "local[*]"里面的'*'表示的是CPU线程的核数,如果去掉只写local就表示单线程
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    val sc = new SparkContext(sparkConf)

    // 创建RDD
    // 从文件中创建RDD,将文件中的数据作为处理的数据源
    // path路径默认以当前环境的根路径为基准。可以写绝对路径,也可以写相对路径,也可以是目录名称
    // sc.textFile("")
//    val rdd = sc.textFile("datas")
//    rdd.collect().foreach(println)

    // wholeTextFiles:以文件为单位读取数据
    // 读取的结果表示为元组,第一个元素表示文件路径,第二个元素表示文件内容
    val rdd = sc.wholeTextFiles("datas")

    // 关闭环境
    sc.stop()
  }
}

  1. 从其他 RDD 创建:主要是通过一个 RDD 运算完后,再产生新的 RDD。
  2. 直接创建 RDD(new):使用 new 的方式直接构造 RDD,一般由 Spark 框架自身使用。
RDD 并行度与分区
  • 默认情况下,Spark 可以将一个作业切分多个任务后,发送给 Executor 节点并行计算,而能够并行计算的任务数量我们称之为并行度。这个数量可以在构建 RDD 时指定。记住,这里的并行执行的任务数量,并不是指的切分任务的数量,不要混淆了。
object Spark02_RDD_Memory_Par {
  def main(args: Array[String]): Unit = {

    // 准备环境
    // "local[*]"里面的'*'表示的是CPU线程的核数,如果去掉只写local就表示单线程
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    //sparkConf.set("spark.default.parallelism","5")
    val sc = new SparkContext(sparkConf)

    // 创建RDD
    // RDD的并行度 & 分区
    // makeRDD方法可以传递第二个参数,这个参数表示分区的数量
    // 第二个参数可以不传递的,那么makeRDD方法会使用默认值:defaultParallelism(默认核数)
    val rdd = sc.makeRDD(List(1, 2, 3, 4))

    // 将处理的数据保存成分区文件
    rdd.saveAsTextFile("output")

    // 关闭环境
    sc.stop()
  }
}
  • 现在有个问题就是读取内存数据的时候,数据是按照并行度的设定进行数据的分区操作,但是数据是怎么分区的呢,分区的规则是怎么样的呢?这个时候就需要观看源码
  • 首先,先点makeRDD方法进去
    在这里插入图片描述
  • 看来最主要的是parallelize 方法,那我们接着点进去
    在这里插入图片描述
  • 接着点ParallelCollectionRDD 构建方法进去
    在这里插入图片描述
  • 所以接着点slice方法进去
    在这里插入图片描述
  • 很显然,positions方法是重点,我们点进去看看
    在这里插入图片描述
  • 就是上面这个方法进行切分的,其中length是数据的长度,numSlices是分区数,所以操作如下图
    在这里插入图片描述
  • 然后创建这个Iterator[(Int, Int)] 之后,回去看那个分割逻辑
    在这里插入图片描述
  • 使用slice将存储数据分区,逻辑如下
  • 好了,上面是内存数据的分区划分,那文件数据怎么划分呢,跟内存数据一样吗,下面就来看看
object Spark02_RDD_Memory_Par {
  def main(args: Array[String]): Unit = {

    // 准备环境
    // "local[*]"里面的'*'表示的是CPU线程的核数,如果去掉只写local就表示单线程
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    //sparkConf.set("spark.default.parallelism","5")
    val sc = new SparkContext(sparkConf)

    // 创建RDD
    // RDD的并行度 & 分区
    // textFile也可以默认设置分区
    val rdd = sc.textFile("datas/1.txt")


    // 将处理的数据保存成分区文件
    rdd.saveAsTextFile("output")

    // 关闭环境
    sc.stop()
  }
}
  • 默认分区到底是多少,进到textFile方法里看看
    在这里插入图片描述
  • minPartitions是最小分区数量,但是默认究竟是多少呢?我们点击defaultMinPartitions进去看看
    在这里插入图片描述
  • 所以这么看一般默认是2,但是真的是这样吗,再做个实验,将1.txt变成下面那种形式,并且将textFile的分区参数设置为2,再看看结果
    在这里插入图片描述
    在这里插入图片描述
  • 上面那个奇怪的现象,说明文件数据的分区不是这么简单,所以我们需要深挖,下面我就来看看文件分区的规律,点击textFile进去看看
    在这里插入图片描述
  • 取这个名字是不是跟hadoop有关,点进去发现并没有什么一样,但是返回来之后,点击TextInputFormat方法就能发现端倪
    在这里插入图片描述
  • 什么端倪呢?就是这个文件输入类,是使用hadoop的方式,到这里就有点恍然大悟了。
    在这里插入图片描述
  • 我们的1.txt 是7个字节,根据公式,计算出来的应该是这样,但是这么算似乎是2个分区啊,怎么是三个呢?因为hadoop划分有个特性,如果剩余的空间占要划分的空间大于10%则再加一块,如果小于则不用,所以这里1/3明显大于10%。所以才会多一块。
    在这里插入图片描述
  • 数据分区的分配总结:
    • 数据以行为单位进行读取
      • spark读取文件,采用的是hadoop的方式读取,所以一行一行的读取,和字节数没有关系
    • 数据读取时以偏移量为单位, 偏移量不会被重复读取,下面是演示图
      在这里插入图片描述
RDD 转换算子
  • RDD 根据数据处理方式的不同将算子整体上分为 Value 类型、双 Value 类型和 Key-Value 类型
  • Value 类型
    • map
      • 函数签名:def map[数据类型] (函数方法): RDD[数据类型]
      • 函数说明:将处理的数据逐条进行映射转换,这里的在转换可以是类型的转换,也可以是值的转换。
      • 注意:
        • RDD的计算一个分区内的数据是一个一个执行逻辑,只有前面一个数据全部的逻辑执行完毕后,才会执行下一个数据,分区内的数据的执行是有序的
        • 不同分区数据计算是无序的
    • mapPartitons
      • 函数签名:def mapPartitions[U: ClassTag] ( f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]
      • 函数说明:将待处理的数据以分区为单位送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。
      • 注意:
        • 可以以分区为单位及逆行数据转换操作
        • 但是会将整个分区的数据加载到内存进行引用
        • 如果处理完的数据是不会被释放掉的,存在对象的引用
        • 在内存较小,数据量较大的场合下,容易出现内存溢出
      • 与map算子的区别
        • 从数据处理的角度:
          • map算子是分区内一个数据一个数据的执行,类似于串行操作。
          • mapPartitions 算子是以分区为单位进行批处理操作
        • 从功能的角度:
          • map算子主要目的将数据源中的数据进行转换和改变。但是不会减少或增多数据。
          • mapPartition算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,所以可以增加或减少数据
        • 从性能的角度:
          • map算子因为类似于串行操作,所以性能比较低
          • mapPartitions算子类似于批处理,所以性能比较高。但是会长时间占用内存,那么这样会导致内存可能不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用。
    • mapPartitionsWithIndex
      • 函数签名:def mapPartitionsWithIndex[U: ClassTag] ( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]
      • 函数说明:将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。
        在这里插入图片描述
    • flatMap
      • 函数签名:def flatMap[U: ClassTag] (f: T => TraversableOnce[U]): RDD[U]
      • 函数说明:将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射
    • glom
      • 函数签名:def glom(): RDD[Array[T]]
      • 函数说明:将同一个分区的数据直接转换成相同类型的内存数组进行处理,分区不变
    • groupBy
      • 函数签名:def groupBy[K] (f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]
      • 函数说明:将数据根据指定的规矩进行分组,分区默认不变,但是数据会被打乱重新组合,我们这样的操作称之为shuffle。
    • filter
      • 函数签名:def filter(f: T => Boolean): RDD[T]
      • 函数说明:
        • 将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。
        • 当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能出现数据倾斜
    • sample
      • 函数签名:def sample( withReplacement: Boolean, fraction: Double, seed: Long = Utils.random.nextLong): RDD[T]
      • 函数说明:根据指定的规则从数据集中抽取数据
        在这里插入图片描述
    • distinct
      • 函数签名:
        • def distinct()(implicit ord: Ordering[T] = null): RDD[T]
        • def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
      • 函数说明:将数据集中重复的数据去重
        在这里插入图片描述
    • coalesce
      • 函数签名:def coalesce(numPartitions: Int, shuffle: Boolean = false,partitionCoalescer: Option[PartitionCoalescer] = Option.empty) (implicit ord: Ordering[T] = null): RDD[T]
      • 函数说明:根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率,当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本
        在这里插入图片描述
    • repartition
      • 函数签名:def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
      • 函数说明:该操作内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
    • sortBy
      • 函数签名:def sortBy[K] (f: (T) => Kascending: Boolean = true, numPartitions: Int = this.partitions.length) (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
      • 函数说明:该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程
      • 注意:
        • sortBy方法可以根据指定的规则对数据源中的数据进行排序,默认为升序,第二个参数可以改变。
  • 双Value类型:也就是两个集合变成一个集合
    • intersection:交集
      • 函数签名:def intersection(other: RDD[T]): RDD[T]
      • 函数说明:对源 RDD 和参数 RDD 求交集后返回一个新的 RDD
    • union:并集
      • 函数签名:def union(other: RDD[T]): RDD[T]
      • 函数说明:对源 RDD 和参数 RDD 求并集后返回一个新的 RDD
    • subtract:差集
      • 函数签名:def subtract(other: RDD[T]): RDD[T]
      • 函数说明:以一个 RDD 元素为主,去除两个 RDD 中重复元素,将其他元素保留下来。求差集
    • zip:拉链
      * 函数签名:def zip[U: ClassTag] (other: RDD[U]): RDD[(T, U)]
      * 函数说明:将两个 RDD 中的元素,以键值对的形式进行合并。其中,键值对中的 Key 为第 1 个 RDD中的元素,Value 为第 2 个 RDD 中的相同位置的元素。
      * 注意:
      * 两个数据源要求分区数量要保持一致
      * 两个数据源要求分区数据数据量保持一致
  • Key-Value类型
    • partitionBy
      • 函数签名:def partitionBy(partitioner: Partitioner): RDD[(K, V)]
      • 函数说明:将数据按照指定 Partitioner 重新进行分区。Spark 默认的分区器是HashPartitioner
    • reduceByKey
      • 函数签名:
        • def reduceByKey(func: (V, V) => V): RDD[(K, V)]
        • def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
      • 函数说明:
        • 可以将数据按照相同的Key对Value进行聚合
    • groupByKey
      • 函数签名:
        • def groupByKey(): RDD[(K, Iterable[V])]
        • def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
        • def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
      • 函数说明:将数据源的数据根据key对value进行分组
      • 跟 reduceByKey 的区别:
        • 从shuffle的角度:reduceByKey和groupByKey 都存在shuffle操作,但是reduceByKey可以在shuffle前对分区内相同key的数据进行预聚合功能,这样会减少落盘的数据量,而groupByKey只是进行分组,不存在数据量减少的问题,reduceByKey性能比较高。
        • 从功能的角度:reduceByKey其实包含分组和聚合的功能。GroupByKey只能分组,不能聚合。所以再分组聚合的场合下,推荐使用reduceByKey,如果仅仅是分组而不需要 聚合。那么还是只能使用groupByKey
      • aggregateByKey
        • 函数签名:def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
          combOp: (U, U) => U): RDD[(K, U)]
        • 函数说明:
          • 将数据根据不同的规则进行分区内计算和分区间计算
          • aggregateByKey 算子是函数柯里化,存在两个参数列表
            • 第一个参数列表中的参数表示初始值
            • 第二个参数列表中含有两个参数
              • 第一个参数表示分区内的计算规则
              • 第二个参数表示分区间的计算规则
      • foldByKey
        • 函数签名:def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]
        • 函数说明:当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为 foldByKey
      • combineByKey
        • 函数签名:def combineByKey[ C] ( createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C): RDD[(K, C)]
        • 函数说明:
          • 最通用的对 key-value 型 rdd 进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值的类型与输入不一致。
          • 第一个参数表示:将相同key的第一个数据进行结构的转换,实现操作
          • 第二个参数表示:分区内的计算规则
          • 第三个参数表示:分区间的计算规则
      • reduceByKey、foldByKey、aggregateByKey、combineByKey 的区别?
        • reduceByKey: 相同 key 的第一个数据不进行任何计算,分区内和分区间计算规则相同
        • foldByKey:相同的key的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同
        • aggregateByKey:相同key的第一个数据和初始值进行分区内计算,分区内和分区间计算规则可以不相同
        • combineByKey:当计算时,发现数据结构不满足要求时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。
      • join
        • 函数签名:def join[W] (other: RDD[(K, W)]): RDD[(K, (V, W))]
        • 函数说明:在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的(K,(V,W))的 RDD
      • leftOuterJoin
        • 函数签名:def leftOuterJoin[W] (other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
        • 函数说明:类似于 SQL 语句的左外连接
      • cogroup
        • 函数签名:def cogroup[W] (other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
        • 函数说明:在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable,Iterable))类型的 RDD
      • 案例实操:
        • 数据准备:时间搓,省份,城市,用户,广告,中间字段使用空格分隔。
        • 需求描述:统计出每一个省份每个广告被点击数量排行的Top3
        • 代码实现:
	package com.bigdata.spark.core.rdd_builder

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark10_RDD_TEST {

  def main(args: Array[String]): Unit = {

    // "local[*]"里面的'*'表示的是CPU线程的核数,如果去掉只写local就表示单线程
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
    //sparkConf.set("spark.default.parallelism","5")
    val sc = new SparkContext(sparkConf)

    //1. 获取源数据
    val data = sc.textFile("datas/agent.log");

    //2. 将元数据进行结构的转换,方便统计
    val mapRDD = data.map {
      line => {
        val details = line.split(" ")
        ((details(1), details(4)), 1)
      }
    }


    //3. 将转换结构后的数据,进行分组聚合
    val reduceRDD:RDD[((String, String), Int)] = mapRDD.reduceByKey(_+_)

    //4. 将聚合的结果进行结构的转换
    val newMapRDD = reduceRDD.map {
      case ((prv, ad), sum) => {
        (prv, (ad, sum))
      }
    }

    //5. 将转换结构后的数据根据省份进行分组
    val groupRDD = newMapRDD.groupByKey()

    //6. 将分组后的数据组内排序,取前三名
    val resultRDD = groupRDD.mapValues {
      rdd => {
        rdd.toList.sortBy(_._2)(Ordering.Int.reverse).take(3)
      }
    }

    //7. 采集数据打印在控制台
    resultRDD.foreach(println)

    sc.stop()
  }
}
RDD行动算子
  • 所谓的行动算子,其实就是触发作业(JOB)执行的方法
  • 底层代码调用的是环境对象的runJob方法
  • 底层代码中会创建ActiveJob。并提交执行
  • reduce
    • 函数签名:def reduce(f: (T, T) => T): T
    • 函数说明:聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据
  • collect
    • 函数签名:def collect(): Array[T]
    • 函数说明:在驱动程序中,以数组 Array 的形式返回数据集的所有元素
  • count
    • 函数签名:def count(): Long
    • 函数说明:返回 RDD 中元素的个数
  • first
    • 函数签名:def first(): T
    • 函数说明:返回 RDD 中的第一个元素
  • take
    • 函数签名:def take(num: Int): Array[T]
    • 函数说明:返回一个由 RDD 的前 n 个元素组成的数组
  • takeOrdered
    • 函数签名:def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
    • 函数说明:返回该 RDD 排序后的前 n 个元素组成的数组
  • aggregate
    • 函数签名:def aggregate[U: ClassTag] (zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
    • 函数说明:分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
  • fold
    • 函数签名:def fold(zeroValue: T)(op: (T, T) => T): T
    • 函数说明:折叠操作,aggregate 的简化版操作
  • countByKey
    • 函数签名:def countByKey(): Map[K, Long]
    • 函数说明:统计每种 key 的个数
  • save
    • 函数签名:
      • def saveAsTextFile(path: String): Unit
      • def saveAsObjectFile(path: String): Unit
      • def saveAsSequenceFile( path: String, codec: Option[Class[_ <: CompressionCodec]] = None): Unit
    • 函数说明:
      • 将数据保存到不同格式的文件中
        • saveAsTextFile: 保存成 Text 文件
        • saveAsObjectFile:序列化成对象保存到文件
        • saveAsSequenceFile: 保存成 Sequencefile 文件
  • foreach
    • 函数签名:def foreach(f: T => Unit): Unit = withScope { val cleanF = sc.clean(f)
      sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))}
    • 函数说明:分布式遍历 RDD 中的每一个元素,调用指定函数
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值