Spark核心编程

Spark 计算框架为了能够进行高并发和高吞吐的数据处理,封装了三大数据结构,用于
处理不同的应用场景。三大数据结构分别是:
➢ RDD : 弹性分布式数据集
➢ 累加器:分布式共享只写变量
➢ 广播变量:分布式共享只读变量
接下来我们一起看看这三大数据结构是如何在数据处理中使用的。

1.1 RDD

1.1.1 什么是 RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
➢ 弹性
⚫ 存储的弹性:内存与磁盘的自动切换;
⚫ 容错的弹性:数据丢失可以自动恢复;
⚫ 计算的弹性:计算出错重试机制;
⚫ 分片的弹性:可根据需要重新分片。
➢ 分布式:数据存储在大数据集群不同节点上
➢ 数据集:RDD 封装了计算逻辑,并不保存数据
➢ 数据抽象:RDD 是一个抽象类,需要子类具体实现
➢ 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在
新的 RDD 里面封装计算逻辑
➢ 可分区、并行计算

1.1.2 核心属性

在这里插入图片描述

➢ 分区列表
RDD 数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性。
在这里插入图片描述
➢ 分区计算函数
Spark 在计算时,是使用分区函数对每一个分区进行计算
在这里插入图片描述

➢ RDD 之间的依赖关系
RDD 是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个 RDD 建
立依赖关系
在这里插入图片描述

➢ 分区器(可选)
当数据为 KV 类型数据时,可以通过设定分区器自定义数据的分区
在这里插入图片描述

➢ 首选位置(可选)
计算数据时,可以根据计算节点的状态选择不同的节点位置进行计算
在这里插入图片描述

1.1.3 执行原理

从计算的角度来讲,数据处理过程中需要计算资源(内存 & CPU)和计算模型(逻辑)。执行时,需要将计算资源和计算模型进行协调和整合。
Spark 框架在执行时,先申请资源,然后将应用程序的数据处理逻辑分解成一个一个的计算任务。然后将任务发到已经分配资源的计算节点上, 按照指定的计算模型进行数据计算。最后得到计算结果。

RDD 是 Spark 框架中用于数据处理的核心模型,接下来我们看看,在 Yarn 环境中,RDD的工作原理:

  1. 启动 Yarn 集群环境
    在这里插入图片描述

  2. Spark 通过申请资源创建调度节点和计算节点
    在这里插入图片描述

  3. Spark 框架根据需求将计算逻辑根据分区划分成不同的任务
    在这里插入图片描述

  4. 调度节点将任务根据计算节点状态发送到对应的计算节点进行计算
    在这里插入图片描述

从以上流程可以看出 RDD 在整个流程中主要用于将逻辑进行封装,并生成 Task 发送给Executor 节点执行计算,接下来我们就一起看看 Spark 框架中 RDD 是具体是如何进行数据处理的。

1.1.4 基本编程

1.1.4.1 RDD创建

在Spark中创建RDD的创建方式可以分为四种:

  1. 从集合(内存)中创建RDD
    从集合中创建RDD,Spark主要提供了两个方法:parallelize和makeRDD
val sparkConf = new SparkConf().setMater("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val rdd1 = sparkContext.parallelize(
	List(1,2,3,4)
)
val rdd2 = sparkContext.makeRDD(
	List(1,2,3,4)
)
rdd1.collect().foreach(println)
rdd2.collect().foreach(println)
sparkContext.stop()

从底层代码实现来讲,makeRDD方法其实就是parallelize方法

def makeRDD[T:ClassTag](
 seq:Seq[T],
 numSlices:Int = defaultParallelism):RDD[T] = withScope {
 parallelize(seq,numSlices)
 }

2)从外部存储(文件)创建RDD
由外部存储系统的数据集创建RDD包括:本地的文件系统,所有Hadoop支持的数据集,比如HDFS,HBase等。

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val fileRDD:RDD[String] = sparkContext.textFile("input")
sparkContext.stop()

3 )从其他RDD创建
主要通过一个RDD运算完后,再产生新的RDD。详情请参考后续章节

4 )直接创建RDD(new)
使用new的方式直接构造RDD,一般由Spark框架自身使用。

1.1.4.2 RDD 并行度与分区

默认情况下,Spark 可以将一个作业切分多个任务后,发送给 Executor 节点并行计算,而能够并行计算的任务数量我们称之为并行度。这个数量可以在构建 RDD 时指定。记住,这里的并行执行的任务数量,并不是指的切分任务的数量,不要混淆了。

val sparkConf =new SparkConf() .setMaster("local[*]") .setAppName("sp ark") 
val sparkContext = new SparkContext(sparkConf)
val dataRDD: RDD[Int] =sparkContext.makeRDD(List(1,2,3,4), 4)
val fileRDD: RDD[String] = sparkContext.textFile("input",2)
fileRDD.collect().foreach(println)
sparkContext.stop()

⚫ 读取内存数据时,数据可以按照并行度的设定进行数据的分区操作,数据分区规则的
Spark 核心源码如下:

def positions(length: Long, numSlices: Int): Iterator[(Int, Int)] = {
 (0 until numSlices).iterator.map { i =>
 val start = ((i * length) / numSlices).toInt
 val end = (((i + 1) * length) / numSlices).toInt
 (start, end)
 }
 }

⚫ 读取文件数据时,数据是按照 Hadoop 文件读取的规则进行切片分区,而切片规则和数据读取的规则有些差异,具体 Spark 核心源码如下

public InputSplit[] getSplits(JobConf job, int numSplits)
 throws IOException {
 long totalSize = 0; // compute total size
 for (FileStatus file: files) { // check we have valid files
 if (file.isDirectory()) {
 throw new IOException("Not a file: "+ file.getPath());
 }
 totalSize += file.getLen();
 }
 long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
 long minSize = Math.max(job.getLong(org.apache.hadoop.mapreduce.lib.input.
 FileInputFormat.SPLIT_MINSIZE, 1), minSplitSize);

 ...

 for (FileStatus file: files) {

 ...

 if (isSplitable(fs, path)) {
 long blockSize = file.getBlockSize();
 long splitSize = computeSplitSize(goalSize, minSize, blockSize);
 ...
 }
 protected long computeSplitSize(long goalSize, long minSize,
 long blockSize) {
 return Math.max(minSize, Math.min(goalSize, blockSize));
 }

1.1.4.3 RDD 转换算子

RDD 根据数据处理方式的不同将算子整体上分为Value类型,双Value类型和Key-Value类型
⚫ Value 类型

  1. map
    ➢ 函数签名
    def map[U: ClassTag](f: T => U): RDD[U]
    ➢ 函数说明
    将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。
val dataRDD: RDD[Int] = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD1: RDD[Int] = dataRDD.map(
 num => {
 num * 2
 }
)
val dataRDD2: RDD[String] = dataRDD1.map(
 num => {
 "" + num
 }
)
  1. mapPartitions
    ➢ 函数签名
    def mapPartitions[U: ClassTag](
    f: Iterator[T] => Iterator[U],
    preservesPartitioning: Boolean = false): RDD[U]
    ➢ 函数说明
    将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。
val dataRDD1: RDD[Int] = dataRDD.mapPartitions(
 datas => {
 datas.filter(_==2)
 }
)

❖ 小功能:获取每个数据分区的最大值
思考一个问题:map 和 mapPartitions 的区别?
➢ 数据处理角度
Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子
是以分区为单位进行批处理操作。
➢ 功能的角度
Map 算子主要目的将数据源中的数据进行转换和改变。但是不会减少或增多数据。
MapPartitions 算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,
所以可以增加或减少数据
➢ 性能的角度
Map 算子因为类似于串行操作,所以性能比较低,而是 mapPartitions 算子类似于批处
理,所以性能较高。但是 mapPartitions 算子会长时间占用内存,那么这样会导致内存可能
不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用。使用 map 操作。

完成比完美更重要

3)mapPartitionsWithIndex
➢ 函数签名
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]
➢ 函数说明
将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处
理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

val dataRDD1 = dataRDD.mapPartitionsWithIndex(
	(index,datas) =>{
	   datas.map(index,_)
	}
) 

❖ 小功能:获取第二个数据分区的数据

    val mapRDD = rdd.mapPartitionsWithIndex(
             (index,datas) =>{
               if(index == 1) {
                 datas.map((index, _))
               }else{
                 Nil.iterator
               }
             }
      )
  1. flatMap
    ➢ 函数签名
    def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]
    ➢ 函数说明
    将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射
val dataRDD = sparkContext.makeRDD(List(List(1,2),List(3,4),1))
val dataRDD1 = dataRDD.flatMap( list => list)

❖ 小功能:将 List(List(1,2),3,List(4,5))进行扁平化操作

  val dataRDD = sc.makeRDD(List(List(1,2),3,List(4,5)),1)

    val mapRDD = dataRDD.flatMap(list => list match {
      case list:List[_] => list
      case _ =>  List(list)
    })
  1. glom
    ➢ 函数签名
    def glom(): RDD[Array[T]]
    ➢ 函数说明
    将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变
val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
val dataRDD1:RDD[Array[Int]] = dataRDD.glom() 

❖ 小功能:计算所有分区最大值求和(分区内取最大值,分区间最大值求和)

6)groupBy
➢ 函数签名
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]
➢ 函数说明
将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。极限情况下,数据可能被分在同一个分区中
一个组的数据在一个分区中,但是并不是说一个分区中只有一个组

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
val dataRDD1 = dataRDD.groupBy( _%2 )

❖ 小功能:将 List(“Hello”, “hive”, “hbase”, “Hadoop”)根据单词首写字母进行分组。
❖ 小功能:从服务器日志数据 apache.log 中获取每个时间段访问量。
❖ 小功能:WordCount。
7) filter
➢ 函数签名
def filter(f: T => Boolean): RDD[T]
➢ 函数说明
将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。
❖ 小功能:从服务器日志数据 apache.log 中获取 2015 年 5 月 17 日的请求路径
8) sample

def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]
➢ 函数说明
根据指定的规则从数据集中抽取数据

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
// 抽取数据不放回(伯努利算法)
//伯努利算法:又叫0,1分布。例如扔硬币,要么正面,要么反面。
//具体实现:根据种子和随机算法算出一个数和第二个参数设置几率比较,小于第二个参数要,大于不要
//第一个参数:抽取的数据是否放回,false:不放回
//第二个参数:抽取的几率,范围在【0,1】之间,0:全不取

思考一个问题:有啥用,抽奖吗?

  1. distinct
    ➢ 函数签名
    def distinct()(implicit ord: Ordering[T] = null): RDD[T]
    def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
    ➢ 函数说明
    将数据集中的重复数据去重
val dataRDD = sparkContext.makeRDD(List(1,2,3,4,1,2),1)
val dataRDD1 = dataRDD.distinct()
val dataRDD2 = dataRDD.distinct(2)

思考一个问题:如果不用该算子,你有什么办法实现数据去重?

  1. coalesce
    ➢ 函数签名
    def coalesce(numPartitions: Int, shuffle: Boolean = false,
    partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
    (implicit ord: Ordering[T] = null)
    : RDD[T]
    ➢ 函数说明
    根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行xiaolv
    当spark程序中,存在过多的小任务的时候,可以通过coalesce方法,收缩合并分区,减少分区的个数,减小任务调度成本
val dataRDD = sparkContext.makeRDD(List(1,2,3,4,1,2),6)
val dataRDD1 = dataRDD.coalesce(2)

思考一个问题:我想要扩大分区,怎么办?
11) repartition
➢ 函数签名
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
➢ 函数说明
该操作内部其实执行的是coalesce操作,参数shuffle的默认值为true。无论是将分区数多的RDD转换为分区数少的RDD,还是将分区数少的RDD转换为分区数多的RDD,repartion操作都可以完成,因为无论如何都会经shuffle过程。

val dataRDD = sparkContext.makeRDD(List(1,2,3,4,1,2),2)
val dataRDD1 = dataRDD.repartition(4) 

思考一个问题:coalesce 和 repartition 区别?

  1. sortBy
    ➢ 函数签名
    def sortBy[K](
    f: (T) => K,
    ascending: Boolean = true,
    numPartitions: Int = this.partitions.length)
    (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
    ➢ 函数说明
    该操作用于排序数据。在排序之前,可以将数据通过f函数进行处理,之后按照f函数处理的结果进行排序,默认为升序排序。排序后新产生的RDD的分区数与原RDD的分区数一致。中间存在shuffle的过程
val dataRDD = sparkContext.makeRDD(List(1,2,3,4,1,2),2)
val dataRDD1 = dataRDD.sortBy(num=>num,false,4)

⚫ 双 Value 类型
13) intersection
➢ 函数签名
def intersection(other: RDD[T]): RDD[T]
➢ 函数说明
对源RDD和参数RDD求交集后返回一个新的RDD

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = saprkContext.makeRDD(List(3,4,5,6))
val dataRDD3 = dataRDD1.intersection(dataRDD2)

思考一个问题:如果两个 RDD 数据类型不一致怎么办?

  1. union
    ➢ 函数签名
    def union(other: RDD[T]): RDD[T]
    ➢ 函数说明
    对源 RDD 和参数 RDD 求并集后返回一个新的 RDD
val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.union(dataRDD2)

思考一个问题:如果两个 RDD 数据类型不一致怎么办?

  1. subtract

➢ 函数签名
def subtract(other: RDD[T]): RDD[T]
以一个RDD元素为主,去除两个RDD中重复元素,将其他元素保留下来。求差集

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.subtract(dataRDD2)

思考一个问题:如果两个 RDD 数据类型不一致怎么办?

  1. zip
    ➢ 函数签名
    def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]
    ➢ 函数说明
    将两个RDD中的元素,以键值对的形式进行合并。其中,键值对中的Key为第1个RDD中的元素,Value为第2个RDD中的相同位置的元素。
val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.zip(dataRDD2)

思考一个问题:如果两个 RDD 数据类型不一致怎么办?
思考一个问题:如果两个 RDD 数据分区不一致怎么办?
思考一个问题:如果两个 RDD 分区数据数量不一致怎么办?

⚫ Key - Value 类型

  1. partitionBy
    ➢ 函数签名
    def partitionBy(partitioner: Partitioner): RDD[(K, V)]
    ➢ 函数说明
    将数据按照指定Partitioner重新进行分区。Spark默认的分区器是HashPartitioner
val rdd:RDD[(Int,String)] = sc.makeRDD((Array(1,"aaa"),(2,"bbb"),(3,"ccc")),3)
import org.apache.spark.HashPartitioner
val rdd2:RDD[(Int,String)] = rdd.partitionBy(new HashParttioner(2))

思考一个问题:如果重分区的分区器和当前 RDD 的分区器一样怎么办?
思考一个问题:Spark 还有其他分区器吗?
思考一个问题:如果想按照自己的方法进行数据分区怎么办?
思考一个问题:哪那么多问题?

  1. reduceByKey
    ➢ 函数签名
    def reduceByKey(func: (V, V) => V): RDD[(K, V)]
    def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
    ➢ 函数说明
    可以将数据按照相同的Key对Value进行聚合
val dataRDD1 = sparkContetxt.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.reduceByKey(_+_)
val dataRDD3 = dataRDD2.reduceByKey(_+_,2)

19)groupByKey
➢ 函数签名
def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
➢ 函数说明
将数据源的数据根据 key 对 value 进行分组

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.groupByKey()
val dataRDD3 = dataRDD1.groupByKey(2)
val dataRDD4 = dataRDD1.groupByKey(new HashPartitioner(2))

思考一个问题:reduceByKey 和 groupByKey 的区别?

从shuffle角度:reduceByKey和groupByKey都存在shuffle的操作,但是reduceByKey可以在shuffle前对分区内相同key的数据进行预聚合(combine)功能,这样会减少落盘的数据量,而groupByKey只是进行分组,不存在数据量减少的问题,reduceByKey性能比较高。

从功能的角度:reduceByKey其实包含分组和聚合的功能。GroupByKey只能分组,不能聚合,所以在分组聚合的场合下,推荐使用reduceByKey,如果仅仅是分组不需要聚合,那么还是只能使用groupByKey

❖ 小功能:WordCount

  1. aggregateByKey
    ➢ 函数签名
    def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
    combOp: (U, U) => U): RDD[(K, U)]
    ➢ 函数说明
    将数据根据不同的规则进行分区内计算和分区间计算
val dataRDD1 = sparkContext.makeRDD(List("a",1),("b",2),("c",3))
val dataRDD2 = dataRDD1.aggregateByKey(0)(_+_,_+_)

❖ 取出每个分区内相同 key 的最大值然后分区间相加

// TODO:取出每个分区内相同key的最大值然后分区间相加
// aggregateByKey 算子是函数柯里化,存在两个参数列表
//1.第一个参数列表中的参数表示初始值
//2.第二个参数列表中含两个参数
// 2.1 第一个参数表示分区内的计算规则
// 2.2 第二个参数表示分区间的计算规则
val rdd = sc.makeRDD(List("a",1),("a",2),("c",3),("b",4),("c",5),("c",6),2)
// 0:("a",1),("a",2),("c",3) => (a,10)(c,10) 
													=>(a,10)(b,10)(c,20)
//1:("b",4),("c",5),("c",6) => (b,10)(c,10)
val resultRDD = rdd.aggregateByKey(10)(
		(x,y) => math.max(x,y)
		(x,y) => x + y
)
resultRDD.collect().foreach(println)

思考一个问题:分区内计算规则和分区间计算规则相同怎么办?(WordCount)

  1. foldByKey
    ➢ 函数签名
    def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]
    ➢ 函数说明
    当分区内计算规则和分区间计算规则相同时,aggregateByKey就可以简化foldByKey
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.foldByKey(0)(_+_)
  1. combineByKey
    ➢ 函数签名
    def combineByKey[C](
    createCombiner: V => C,
    mergeValue: (C, V) => C,
    mergeCombiners: (C, C) => C): RDD[(K, C)]
    ➢ 函数说明
    最通用的对key-value型rdd进行聚集操作的聚集函数(aggregation function)。类似于aggregate( ) , combineByKey()允许用户返回值的类型与输入不一致。
    小练习:将数据List((“a”, 88), (“b”, 95), (“a”, 91), (“b”, 93), (“a”, 95), (“b”, 98))求每个 key 的平
    均值
val list:List[(String,Int)] = List(("a",88),("b",95),("a",91),("b",93),("a",95),("b",98))
val input:RDD[(String,Int)] = sc.makeRDD(list,2)
val combineRdd:[(String,(Int,Int))] = input.combineByKey(
	(_,1),
	(acc:(Int,Int),v) => (acc._1 + v,acc._2 + 1),
	(acc1:(Int,Int),acc2:(Int,Int)) => (acc._1 + acc2._1,acc1._2 + acc2._2)
)

思考一个问题:reduceByKey、foldByKey、aggregateByKey、combineByKey 的区别?
rduceByKey:相同key的第一个数据不进行任何计算,分区内和分区间计算规则相同
FoldByKey:相同key的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同
AggregateByKey:相同key的第一个数据和初始值进行分区内计算,分区内和分区间计算规则可以不相同
CombineByKey:当计算时,发现数据结构不满足要求时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。

23)sortByKey
➢ 函数签名
def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
: RDD[(K, V)]
➢ 函数说明
在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回一个按照 key 进行排序的

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(true)
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(false)

❖ 小功能:设置 key 为自定义类 Use
24) join

➢ 函数签名
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
➢ 函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的(K,(V,W))的 RDD

val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))
val rdd1: RDD[(Int, Int)] = sc.makeRDD(Array((1, 4), (2, 5), (3, 6)))
rdd.join(rdd1).collect().foreach(println)

思考一个问题:如果 key 存在不相等呢?

  1. leftOuterJoin

➢ 函数签名
def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
➢ 函数说明
类似于 SQL 语句的左外连接

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val rdd: RDD[(String, (Int, Option[Int]))] = dataRDD1.leftOuterJoin(dataRDD2)
  1. cogroup

➢ 函数签名
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
➢ 函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable,Iterable))类型的 RDD

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("a",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("c",2),("c",3)))
val value: RDD[(String, (Iterable[Int], Iterable[Int]))] =
dataRDD1.cogroup(dataRDD2)

5.1.4.4 案例实操

  1. 数据准备
    agent.log:时间戳,省份,城市,用户,广告,中间字段使用空格分隔。
  2. 需求描述
    统计出每一个省份每个广告被点击数量排行的 Top3
  3. 需求分析
  4. 功能实现
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

(YSY_YSY)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值