目录
1 如何根据数据训练出最优权重参数?
1.1 从数据中学习
我们知道在神经网络的学习过程中,参数个数是成千上万的,这不可能要求我们自己一个个手动输入,所以这些参数是根据数据设置相应的参数。这就是神经网络的学习。
1.1.1 数据驱动
深度学习与机器学习的联系
深度学习有时候称为端到端机器学习,端到端是从原始数据获得目标结果。
神经网络的一个优点就是端到端的机器学习,从原始数据中学习,与处理的问题无关,只与数据有关。
1.1.2 训练数据与测试数据
训练数据:称为监督数据
泛化能力:处理测试数据的能力
过拟合:只能处理某一个数据集,而无法处理其他数据集,也就是泛化能力过小
1.1.3 损失函数
损失函数是神经网络中所用的指标,这个指标可以用来寻找最优权重参数。
一般:均方误差,交叉熵误差函数
1.1.4 均方误差
1.1.5 交叉熵误差
因为只有t为1时才计算,所以计算量比均方误差小,同时log是个负数的单调递增函数,趋向于0,所以y越大则E的结果越趋向于0,那么其误差结果就越小。