深度学习入门-基于python的理论与实现-神经网络的学习

本文介绍了深度学习中的神经网络学习,包括数据驱动、训练与测试数据、损失函数(如均方误差和交叉熵)、mini-batch学习以及数值微分和梯度下降法。通过两层神经网络的学习过程,展示了损失函数如何减小,识别精度如何提高,从而实现参数优化。
摘要由CSDN通过智能技术生成

1 如何根据数据训练出最优权重参数?

1.1 从数据中学习

我们知道在神经网络的学习过程中,参数个数是成千上万的,这不可能要求我们自己一个个手动输入,所以这些参数是根据数据设置相应的参数。这就是神经网络的学习。

1.1.1 数据驱动

在这里插入图片描述
深度学习与机器学习的联系
深度学习有时候称为端到端机器学习,端到端是从原始数据获得目标结果。
神经网络的一个优点就是端到端的机器学习,从原始数据中学习,与处理的问题无关,只与数据有关。

1.1.2 训练数据与测试数据

训练数据:称为监督数据
泛化能力:处理测试数据的能力
过拟合:只能处理某一个数据集,而无法处理其他数据集,也就是泛化能力过小

1.1.3 损失函数

损失函数是神经网络中所用的指标,这个指标可以用来寻找最优权重参数。
一般:均方误差,交叉熵误差函数

1.1.4 均方误差

在这里插入图片描述
在这里插入图片描述

1.1.5 交叉熵误差

在这里插入图片描述

因为只有t为1时才计算,所以计算量比均方误差小,同时log是个负数的单调递增函数,趋向于0,所以y越大则E的结果越趋向于0,那么其误差结果就越小。

1.1.6 m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nefelibat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值