深度学习入门-基于python的理论与实现-深度学习

本文探讨了深度学习的理论与实现,通过加深网络以提高识别精度,介绍了历史上的突破如VGG、GoogLeNet和ResNet。讨论了深度学习的高速化方法,包括GPU加速、分布式学习和运算精度位数缩减。此外,还展示了深度学习在物体检测、图像分割和图像生成等领域的应用,并展望了其在自动驾驶和强化学习等未来方向的发展。
摘要由CSDN通过智能技术生成

1 前言

本章就是《深度学习入门-基于python的理论与实现》这本书的最后一章节了。
深度学习是加深了层的深度神经网络,基于之前介绍的网络,只需要通过叠加层就可以创建深度深度网络,本章学习深度网络的性质、课题、可能性,对当前的深度学习概括。

1.1 加深网络

在之前的章节中,我们学习了构成神经网络的各种层、学习时的有效技巧、对图像特别有效的CNN、参数的最优化方法等,这章将会利用前面学到的技术创建一个深度网络,挑战MNIST数据集的手写数字识别。

1.1.1 向更深的网络出发

在这里插入图片描述
这个网络有以下特点
1)基于3*3的小型滤波器的卷积层
2)激活函数是ReLU
3) 全连接层的后面使用Dropout层
4)基于Adam 的最优化
5)使用He初始值作为权重初始值
这个网络的识别精度是99.38%,使用了之前介绍的神经网络技术。
在这里插入图片描述
上图我们人类也有可能识别错误。

1.1.2 进一步提高识别精度

在“what is the class of this image?”为标题的网站上,以排行榜的形式刊登了目前通过论文等渠道发表的针对各种数据集的方法的识别精度。
排名靠前的都是基于CNN,到2016年6月,对MNIST 数据集识别精度为99.79%,是使用了CNN,其中卷积层为两层,全连接层为两层的网络。对于手写数字识别不需要用到太多层。
集成学习、学习率衰减、数据扩充都可以提高识别精度,数据扩充在提高识别精度上效果显著。
数据扩充可以通过图像的旋转、平移等变形,或者施加亮度,放大、缩小等。

1.1.3 加深层的动机

对于加深层的重要性理论上的研究不够透彻,从过往的研究和实验中可以解释。
ILSVRC为代表的大规模图像识别的比赛结果中可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nefelibat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值