快速下降法python实现(含误差与迭代次数画图功能)

本文介绍了如何在Python中实现快速下降法,并对比了与共轭下降法的性能。通过修改上一帖的代码,去除了beta计算和修改了迭代更新公式。实验结果显示,当矩阵大小为50且误差阈值为10e-8时,快速下降法迭代近8000次,而共轭梯度法仅需25次,表明共轭梯度法效率更高。由于时间限制,未进行更多数据的画图比较。
摘要由CSDN通过智能技术生成

同样接之前共轭下降法的帖子,题目要求是两种方法做对比,我上次忘写了。
是在上一篇代码的基础上改的,改的地方不大,就是去掉beta的计算,以及
d=ri 不需要d=ri + beta*di

最后画了误差(范数对10取对数)和计算次数的关系图。

import numpy as np
import math
from math import log
import matplotlib.pyplot as plt

def generate_matrix(n):
    # 使用对角矩阵相加得到三对角矩阵A
    array_a = np.diag([-2] * n)
    array = np.diag([1] * (n-1))
    a = np.zeros((n-1))
    b = np.zeros(n)
    array_b = np.insert(array, 0, values=a, axis=0)# 添加行
    array_b = np.insert(array_b, (n-1), values=b, axis=1)# 添加列
    array_c = np.insert(array, (n-1), values=a, axis=0)
    array_c = np.insert(array_c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炖鹅小铁锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值