学习笔记
文章平均质量分 65
炖鹅小铁锅
浪漫过敏 不好相处
展开
-
【论文阅读】ToupleGDD: A Fine-Designed Solution of Influence Maximization by Deep Reinforcement Learning
• 如果节点u首先在时间戳t被激活,那么u将尝试在时间戳t + 1激活其未激活的外邻居v,成功率为puv。• I(S)扩散过程终止时激活的节点数,σ (S)为S能激活的节点数。• (u,v):u是v的in-neighbor,v是u的out-neighbor。学习拓扑信息,学习级联效应,利用设计的随机游走方式学习节点的局部和全局影响力。• 初始,种子集S中的所有节点为激活状态,其余节点为非激活状态;以S≤b的小节点集S作为种子,其影响范围最大。3. K回合迭代,使用嵌入构造参数化函数Q(v,S,Θ)原创 2023-06-07 14:51:39 · 505 阅读 · 1 评论 -
【论文阅读】社交网络识别影响力最大节点方法综述-05
识别关键节点的一个主要目的是找出在某些特定的动力学过程中起关键作用的节点。因此,一个节点或一组节点对某些给定动力过程的影响通常被视为关键节点的标准。例如,对于任意一个节点,将该节点设置为受感染的种子,然后基于(SIR)模型,将曾经受感染的节点总数作为量化该节点重要性的度量标准。对于给定的动力学,在不同的动力学参数下,结构中心性的表现也相差甚远。所以不能构建统一模型。原创 2022-12-12 16:06:13 · 3308 阅读 · 2 评论 -
【项目调研+论文阅读】基于BERT的中文命名实体识别方法[J] | day6
《基于BERT的中文命名实体识别方法》王子牛 2019-《计算机科学》文章目录一、相关工作二、具体步骤1.Bi-LSTM2.CRF结构三、相关实验1.数据集2.参数设置3.实验结果利用大规模未标注语料对bert行训练,获取文本抽象特征;利用Bi-LSTM神经网络获取序列化文本的上下文抽象特征;通过条件随机场CRF进行序列解码标注,提取出相应的实体。一、相关工作二、具体步骤1.Bi-LSTM采用Graves等提出的改进了LSTM模型中记忆单元和门限机制的版本。2.CRF结构替代soft原创 2022-01-21 20:19:08 · 747 阅读 · 0 评论 -
【论文阅读】基于未知传播模型的信息源检测问题 2017年AAAI国际先进人工智能协会
Label Propagation based Source Identification(LPSI)基本思想:若一个节点附近有大量被感染节点,则该节点为感染源前提假设:该网络已被部分感染;感染源附近被感染节点比例大,感染区域边界的被感染节点比例少基本方法:(基于标签传播LPSI)让感染状态在网络中迭代传播作为标签,最后标签传播结果的局部峰值作为源节点讨论了LPSI的收敛性和迭代性以往方法的缺点:考虑传播模型。需要先验经验,新的传染病和网络谣言传播的传播模型难确定;确定传播模型原创 2022-01-04 10:41:46 · 559 阅读 · 0 评论 -
python实现最小二乘拟合函数(选择三种不同基函数,基函数可改变)
作业题目和要求:解决思路:分别使用基函数是fai_i(x) = x^i ,是勒让德正交基函数,是利用正交函数关系式构造出g0~g4实现拟合。相关知识:计算结果如下:计算拟合误差,使用2-范数:也就是误差平方求和再开方(方差好像。。)import numpy as npdef Linear_independence_functions(m,n,list_x,list_y): #选择线性无关函数fai(x)作为基函数,公式(5.2.14) #构造方程组参数G与G的转置原创 2021-10-24 19:38:08 · 4703 阅读 · 0 评论 -
快速下降法python实现(含误差与迭代次数画图功能)
同样接之前共轭下降法的帖子,题目要求是两种方法做对比,我上次忘写了。是在上一篇代码的基础上改的,改的地方不大,就是去掉beta的计算,以及d=ri 不需要d=ri + beta*di最后画了误差(范数对10取对数)和计算次数的关系图。import numpy as npimport mathfrom math import logimport matplotlib.pyplot as pltdef generate_matrix(n): # 使用对角矩阵相加得到三对角矩阵A原创 2021-10-19 13:08:02 · 961 阅读 · 0 评论 -
python实现共轭梯度算法(含误差与运算次数的折线图)
西安交通大学《数值分析》第三章课后题3.2import numpy as npimport mathdef generate_matrix(n): # 使用对角矩阵相加得到三对角矩阵A array_a = np.diag([-2] * n) array = np.diag([1] * (n-1)) a = np.zeros((n-1)) b = np.zeros(n) array_b = np.insert(array, 0, values=a, a原创 2021-10-03 14:42:24 · 739 阅读 · 0 评论 -
python生成任意n阶的三对角矩阵
数学作业要求实现共轭梯度法的算法。题目中的矩阵A是n=400/500/600的三对角矩阵。在网上查阅资料未果后,自己解决了。import numpy as npdef generate_matrix(n): # 使用对角矩阵相加得到三对角矩阵A array_a = np.diag([-2] * n) array = np.diag([1] * (n-1)) a = np.zeros((n-1)) b = np.zeros(n) array_b = n原创 2021-10-03 11:31:10 · 2198 阅读 · 1 评论 -
【NLP】毕设学习笔记(九)长短期神经网络LSTM
无隐藏层的simple RNN 和 有隐藏层的standard RNN人在进行决策的时候,不仅仅是根据当前的输入和之前完成该事情的先前记忆。例如在拼拼图时,当前时刻的输入就是新拿起的一块拼图,完成该事情的先前记忆是截至上一步完成了哪些部分的拼接,但是在决定接下来要把拼图放在哪个位置,还需要思考这幅拼图的完整图画。这就是隐藏层在RNN中起到的作用。如果不思考完整图画就直接做决定,就是无隐藏层的简单RNN,而思考完整图画的RNN是添加了隐藏层的标准RNN。显然,添加了隐藏层有助于我们更好的进行当下时刻的决策.原创 2021-04-23 16:44:58 · 365 阅读 · 0 评论 -
【NLP】毕设学习笔记(八)“前馈 + 反馈” = 循环神经网络RNN
前馈神经网络和循环神经网络分别适合处理什么样的任务?如果分类任务仅仅是进行判断和识别,例如判断照片上的人的性别,识别图片上是否有小狗图案,那么对输入的数据仅仅需要做特征寻找的工作即可,找到满足该任务的特征,或判断局部特征的强弱,就可以实现目的。但是如果对于稍微复杂一点的任务。例如判断两句话是否存在因果关系,或在一篇文章中找到某个问题的答案,抛开输入数据的位置关系仅仅关注特征就变得不可取了。这个时候还需要考虑输入数据之间的位置关系。因为位置关系影响了词语之间的语义和理解。而让前馈神经网络代表之一的例如CN.原创 2021-04-23 09:02:39 · 683 阅读 · 0 评论 -
【NLP】毕设学习笔记(七)前馈神经网络代表者——卷积神经网络无公式理解
含隐藏层的全连接前馈神经网络图:加入隐藏层而非只有输入层和输出层的原因:如果不加入隐藏层,则在进行最终的判断时,输入层的每一个数据都和输出结果直接挂钩,但事实上,这样的挂钩是十分不可靠的。例如,判断照片上的人是男生还是女生,输入数据是图片上的每一个像素点,输出结果是是男生还是女生。如果没有隐藏层,也就意味着,每一个像素点和性别判断是直接相关的,但实际并不是这样。但如果加入一个隐藏层,则网络结构可以看成两个分类器的结合,输入层和隐藏层看作第一个分类器,隐藏层和输出层看作第二个分类器,且第二个分类器的原创 2021-04-22 21:18:08 · 246 阅读 · 0 评论 -
【NLP】毕设学习笔记(四)bert相关知识点
bert的优势bert是Word2Vec的替代,Word2Vec文章一写过,是词嵌入的一种方法,作用是将自然语言转化为词向量。bert使用transformer为主要框架,transformer可以准确把握语句的双向关系。bert是通过自监督学习方法,自监督学习方法指在没有标签的数据集上进行监督学习,学习结果是学习到如何更好的对单词进行特征表示。学习完毕后,在具体的NLP任务上,使用学到的特征表示法,为任务进行词嵌入,即将任务数据中的自然语言转化为词向量(该词向量比一般方法获得的词向量要更优秀)。所原创 2021-04-18 08:41:41 · 1065 阅读 · 0 评论 -
【NLP】毕业设计学习笔记(三):bert_bi-lstm代码解读
class是一个生产bert_lstm的工厂,工厂里有一个初始化函数(init)和两个instance method功能函数(forward,init_hidden)instance method是指工厂里加工初始化后bert_lstm的函数还有一种class method,是指对工厂进行加工的函数,这里不涉及。一个bert_lstm需要output_size,n_layers,hidden_dim,bidirectional,lstm,dropout(所有self.的东西)才能被构造使用insta原创 2021-04-17 10:13:43 · 4002 阅读 · 0 评论 -
【爬虫】爬取冰冰第一条视频,保存至csv文件(多页爬取)
import requestsimport timerfrom bs4 import BeautifulSoupimport demjsonimport asyncioimport pymysqlimport pandas as pdfrom sqlalchemy import create_engine# 首先我们写好抓取网页的函数def get_html(url): headers = { 'accept': 'text/html,application/x原创 2021-04-17 06:53:45 · 348 阅读 · 0 评论 -
【爬虫】毕设学习记录:python爬取静态网页(只爬取单页)
毕设题目是对指定网页内容进行正负向判断,并输出判断结果。所以只需要爬取单页面的内容即可。目标网页:在途网-哈尔滨酒店评价【第一步:客户端向目标网址(服务器)发起get请求】import requestsdef get_html(url):#客户端向服务器发起get请求 headers = {# 请求的首部信息 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/原创 2021-04-16 22:14:18 · 579 阅读 · 0 评论 -
【NLP】毕设学习笔记(二)transformer
文章目录transformer组成encoder/decoder组成1.self-Attenion背景概念attention函数计算2.Feed Forward Neural Network(前馈神经网络)transformertransformer组成由若干encoder-decoder组成encoder/decoder组成1.self-Attenion背景九几年,Attention机制在视觉图像领域被提出。2014年,有团队使用attention机制在RNN上进行图像分类。2017年,原创 2021-04-15 10:57:55 · 939 阅读 · 0 评论 -
【NLP】毕设学习笔记(一):词袋模型、主题模型、词嵌入
NLP分类方法历史词袋模型(1954)One-hotTF-IDFN-gram主题模型(1998)LSApLSALDA词嵌入(word embedding)word2vec(2013)Skip-gramCbowGlove词袋模型(1954)相关文章:词袋模型简要概述和发展史使用向量表示文章/句子,向量中每一个维度表示一个单词。One-hot性别特征:[“男”,“女”],(这里只有两个特征,所以N=2):男 => 10女 => 01祖国特征:[“中国”,"美国,“法国”](这原创 2021-04-14 21:40:27 · 1290 阅读 · 0 评论