菜鸡奋斗路04-树7 二叉搜索树的操作集

函数接口定义：

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );


typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};

• 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针；
• 函数DeleteX从二叉搜索树BST中删除，并返回结果树的根结点指针；如果X不在树中，则打印一行Not Found并返回原树的根结点指针；
• 函数Find在二叉搜索树BST中找到X，返回该结点的指针；如果找不到则返回空指针；
• 函数FindMin返回二叉搜索树BST中最小元结点的指针；
• 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例：

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历，由裁判实现，细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历，由裁判实现，细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;

BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");

return 0;
}
/* 你的代码将被嵌在这里 */


输入样例：

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3


输出样例：

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Inorder: 1 2 4 6 8 9


BinTree Insert(BinTree BST,ElementType X)
{
if(!BST)
{
BST=(BinTree)malloc(sizeof(struct TNode));
BST->Data=X;
BST->Left=BST->Right=NULL;
}
else
{
if(X>BST->Data)
BST->Right=Insert(BST->Right,X);
else if(X<BST->Data)
BST->Left=Insert(BST->Left,X);
}
return BST;
}

BinTree Delete(BinTree BST,ElementType X)
{
Position Tmp;
else
{
if(X>BST->Data)
BST->Right=Delete(BST->Right,X);  //递归的从左右子树中寻找待删除元素
else if(X<BST->Data)
BST->Left=Delete(BST->Left,X);
else
{
if(BST->Left&&BST->Right)         //若被删除结点有左右儿子，取右子树的最小结点（或左子树最大结点）替代被删除结点
{
Tmp=FindMin(BST->Right);
BST->Data=Tmp->Data;
BST->Right=Delete(BST->Right,BST->Data);
}
else
{
Tmp=BST;
if(!BST->Left)
BST=BST->Right;
else if(!BST->Right)
BST=BST->Left;
free(Tmp);
}
}
}
return BST;
}

BinTree Find( BinTree BST, ElementType X )
{
while(BST)
{
if(X>BST->Data)
BST=BST->Right;
else if(X<BST->Data)
BST=BST->Left;
else
return BST;
}
return NULL;
}

Position FindMin( BinTree BST )
{
if(!BST)                           //最小元素就是没有左儿子的结点
return NULL;
else if(BST->Left)
return FindMin(BST->Left);
else
return BST;
}

Position FindMax( BinTree BST )    //最大元素就是没有右儿子的结点
{
if(!BST)
return NULL;
else if(BST->Right)
return FindMax(BST->Right);
else
return BST;
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120