Prayotter Nest

谢谢你点进来看我的点点滴滴~

菜鸡奋斗路04-树7 二叉搜索树的操作集

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
作者: 陈越
单位: 浙江大学
时间限制: 400ms
内存限制: 64MB
代码长度限制: 16KB


个人分析:emmmmmmmmmmmmmmmmmmmm,好久不见函数题,就是把二叉搜索树的插入,删除操作函数实现一遍,easy~

上代码:

BinTree Insert(BinTree BST,ElementType X)
{
	if(!BST)
	{
		BST=(BinTree)malloc(sizeof(struct TNode));
		BST->Data=X;
		BST->Left=BST->Right=NULL;
	}
	else
	{
		if(X>BST->Data)
			BST->Right=Insert(BST->Right,X);
		else if(X<BST->Data)
			BST->Left=Insert(BST->Left,X);	
	}
	return BST;
 } 
 
BinTree Delete(BinTree BST,ElementType X)
 {	
 	Position Tmp;
 	if(!BST) printf("Not Found\n");
 	else
	{
 		if(X>BST->Data)
 			BST->Right=Delete(BST->Right,X);  //递归的从左右子树中寻找待删除元素
 		else if(X<BST->Data)
 			BST->Left=Delete(BST->Left,X);
 		else
 		{
 			if(BST->Left&&BST->Right)         //若被删除结点有左右儿子,取右子树的最小结点(或左子树最大结点)替代被删除结点
 			{
 				Tmp=FindMin(BST->Right);
 				BST->Data=Tmp->Data;
 				BST->Right=Delete(BST->Right,BST->Data);
			}
			else
			{	
				Tmp=BST;                
				if(!BST->Left)
					BST=BST->Right;
				else if(!BST->Right)
					BST=BST->Left;
				free(Tmp);
			}	
		}
  }
	return BST;
 }
 
BinTree Find( BinTree BST, ElementType X )
 {
 	while(BST)
 	{
 		if(X>BST->Data)
 			BST=BST->Right;
 		else if(X<BST->Data)
 			BST=BST->Left;
 		else
 			return BST;	
	}
	return NULL;
 }
 
Position FindMin( BinTree BST )
{
 	if(!BST)                           //最小元素就是没有左儿子的结点
 		return NULL;
 	else if(BST->Left)
 		return FindMin(BST->Left);
 	else
 		return BST;
}
 
Position FindMax( BinTree BST )    //最大元素就是没有右儿子的结点
{
 	if(!BST)
 		return NULL;
 	else if(BST->Right)
 		return FindMax(BST->Right);
 	else
 		return BST;
 }

测试结果:


总结:总结个啥?好像就是熟悉代码的题目....


阅读更多
个人分类: data structe
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

菜鸡奋斗路04-树7 二叉搜索树的操作集

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭