494. 目标和:动态规划+回溯

https://leetcode.cn/problems/target-sum/

题目要求

给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

回溯

class Solution {
    int result = 0;

    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        if (target > sum)
            return 0;
        if ((target + sum) % 2 == 1)
            return 0;
        int bagSize = (target + sum) / 2;
        backtrack(nums, bagSize, 0, 0);
        return result;
    }

    public void backtrack(int[] nums, int target, int sum, int index) {
        if (sum == target) {
            result++;
        }
        for (int i = index; i < nums.length && sum <= target; i++) {
            backtrack(nums, target, sum + nums[i], i + 1);
        }
    }
}

动态规划

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];
        // 如果target过大 sum将无法满足
        if (target < 0 && sum < -target) return 0;
        if ((target + sum) % 2 != 0) return 0;
        // 数组nums中的元素都是非负整数,left也必须是非负整数,所以前提是sum−target是非负偶数
        int size = (sum + target) / 2;
        if (size < 0) size = -size;
        int[] dp = new int[size + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = size; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[size];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值