https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/
题目要求
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
贪心
class Solution {
public int maxProfit(int[] prices) {
int min = Integer.MAX_VALUE;
int n = prices.length;
int res = 0;
for (int i = 0; i < n; i++) {
min = Math.min(min, prices[i]);
res = Math.max(res, prices[i] - min);
}
return res;
}
}
- 股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。
动态规划
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2];
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[n - 1][1];
}
}
- dp数组以及下标的含义
- dp[i][0] 表示第i天持有股票所得最多现金
- dp[i][1] 表示第i天不持有股票所得最多现金
- 递推公式
- 如果第i天持有股票即dp[i][0], 由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
- 那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
- 如果第i天不持有股票即dp[i][1], 由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
- 同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
- 如果第i天持有股票即dp[i][0], 由两个状态推出来